Попытки установления авторства тех или иных сведений, изложенных в «Началах», усложняются еще и тем, что этот труд в оригинале до нас не дошел. Самые старые из обнаруженных списков датируются IX веком. Во времена средневековья точные науки в Европе были не в чести. В результате полный текст «Начал» был утрачен. Отдельные фрагменты пришлось восстанавливать по арабским переводам. За это время в результате многочисленных переписываний и переводов в тексты был внесен целый ряд изменений и добавлений. Средневековые ученые пусть и не стремились к научному приоритету, но и не стеснялись дополнять работу предшественника собственными данными. Так что не всегда можно с достоверностью сказать, является ли тот или иной фрагмент оригинальным или же он представляет собой более позднюю вставку.
Кроме «Начал», Евклиду принадлежат еще несколько трудов. Из них до наших дней дошли «Данные», в которых содержатся начала геометрического анализа, астрономический трактат «Явления», «Оптика», «Катоптрика»[2], сборник из десяти задач по музыкальным интервалам «Сечения канона», сборник задач «О делениях», посвященный делению площадей фигур. К сожалению, целый ряд сочинений Евклида был утерян, о них мы знаем по ссылкам других авторов. Например, книгу «Начала конических сечений», содержавшую информацию об одной из вершин античной математики (теории конических сечений) упоминает в своих работах Архимед.
Наш рассказ о великом ученом вышел довольно коротким, конечно же, не из-за того, что Евклид не достоин большего. Слишком много времени прошло с тех пор, когда он создавал свои «Начала», слишком много за это время было утрачено и забыто. Но, как известно, время не властно над истинными ценностями – вклад Евклида в развитие науки огромен и таковым он останется навсегда.
АРХИМЕД
(ок. 287 г. до н. э. – ок. 212 г. до н. э.)
Знаменитый древнегреческий ученый – математик, механик, астроном, физик, инженер, конструктор, изобретатель. Основоположник математической физики, открывший многие из основных законов физики и математики, разработавший методы нахождения площадей, поверхностей и объемов различных фигур и тел, предвосхитившие интегральное