Even at its height, the financial crisis was only an emergency for those responsible for handling it. A country faces an emergency if an enemy is mobilizing on its border to invade, or if its people are dying in thousands from a plague. A family faces an emergency if its house is on fire or if one of its members has been hit by a car and needs to be rushed to hospital. An emergency is a period in which everything else is ignored in favor of immediate action.
From time to time, the chronic problems that face the world erupt and cause a minor emergency such as that on the evening in September 2008 when the Irish banks told the government they might be unable to open the following day. When something like that happens, people stay up late, the eruption is dealt with and then life goes on until the next eruption occurs. Few of us think that anything radical has to be done. We assure each other that minor tinkering, like holding an inquiry, beefing up the regulatory system and limiting bankers’ bonuses, will be enough to allow us to carry on living pretty much as we do now for the foreseeable future.
We are ignoring these eruptions in the way the inhabitants of Pompeii ignored the earthquakes which preceded the volcanic blast that destroyed them in 79 AD and which had been doing considerable damage for at least the previous sixteen years. Some of the earthquake-damaged houses were actually under repair at the time Vesuvius erupted, with piles of plaster and tools lying where the workers had left them. Rather than moving out, the Pompeiians wanted to carry on with life as usual. They had every reason to do so. The whole Bay of Naples area was booming and the holiday villas of the rich provided a lot of work. Interestingly, those who dropped everything and fled immediately when ash and pumice started raining down probably survived. However, many thought their best chance was to take shelter. They died when the avalanche of hot ash, pumice, rock fragments and volcanic gas began.
The common cause of all our crises today is our use of fossil fuel. Just as addictive drugs alter the metabolism of the human body in ways that create dependency and make it difficult to give them up, fossil fuels have profoundly altered the metabolism of economies and societies. As a result, the systems of production and distribution we have now, and the types of relationship we have with other people, including those within our own families, will be changed out of all recognition as the energy drug is withdrawn. The withdrawal period will be particularly painful in countries that fail to ensure that they have a decent supply of renewable energy methadone available to them. Cold turkey will mean that many people die. Thinking of Pompeii, if we leave it too late before we rush toward a new type of civilization, we will have to leave behind all our hi-tech, high-energy tools, and we may not survive without them.
Here are some of the ways in which fossil energy use has perverted our economies and our lives.
1. It has transformed manufacturing methods by displacing human labor.
2. It has transformed agricultural methods, replacing human labor, animal power and sunlight.
3. It has enabled the world population to grow to a level that may well be unsupportable without its use.
4. It has devalued human labor and led to widespread unemployment.
5. It has made the economy reliant on economic growth to avoid collapse.
6. It has enabled extremes of wealth and poverty to develop.
7. It has led to the development of industrial capitalism.
8. It has produced profits that had to be recycled. This led to the growth of the banking system and debt-based money.
9. By fueling powered transport, it has destroyed self-reliant local economies and the nature of local relationships.
Once fossil energy began to be used, these perversions were inevitable. About seven years ago, I wrote the concluding essay for Before the Wells Run Dry, a book about future energy supplies which emerged from a previous Feasta conference called Ireland’s Transition to Renewable Energy. That conference was the forerunner for a lot of the thinking in Feasta that laid the foundations for the New Emergency event so I’m going to draw rather liberally on what I wrote in 2003. The essay asked where humanity had gone wrong. When did we take a path which, because “one path leads to another” in Robert Frost’s phrase, inexorably led us to becoming totally dependent on a grotesquely unsustainable energy system?
I argued that the wrong turn was taken in England in the 16th Century as the population began to recover from the Black Death. The increased numbers — a rise from 1.6 million to 5.5 million in less than 200 years — naturally put greater pressure on resources and caused communities to have problems living within the limits imposed by their local environments. In 1631, Edmund Howes described how this had forced them to start to burn coal:
Within man’s memory it was held impossible to have any want of wood in England. But...such hath been the great expence of timber of navigation, with infinite increase of building houses, with great expence of wood for household furniture, casks and other vessels not to be numbered, and of carts, wagons and coaches, besides the extreme waste of wood in making iron, burning of bricks and tiles, that at this present, through the great consuming of wood as aforesaid, and the neglect of planting of woods, there is so great scarcity of wood throughout the whole kingdom that not only the City of London, all haven towns and in very many parts within the land, the inhabitants in general are constrained to make their fires of sea-coal or pit coal, even in the chambers of honourable personages and through necessity which is the mother of all arts, they have in late years devised the making of iron the making of all sorts of glass and the burning of bricks with sea-coal and pit-coal.1
That was it. The thin end of the wedge. The slippery slope. For the first time, humanity was starting to depend on a nonrenewable, and hence unsustainable, energy source for its comfort and livelihood. It was understandable that it did. Which of us would have worried about the long-term consequences of burning black stones collected from beaches in Northumberland, or which had been dug out of shallow holes in the ground?
I then pointed out that as the demand for coal increased, the easiest, shallowest mines were soon exhausted, and deeper and deeper pits had to be dug. This posed enormous problems since a shaft floods if it is sunk below the water table and a pump has to be installed to keep things reasonably dry. The early pumps consisted of rags or buckets on continuous chains which were turned by horses or, if a stream was handy, a water wheel. However, the deeper a shaft went, the longer the chain had to be and the more friction the horse or the wheel had to overcome. As this placed a real limit on how deep a mine could go, mine-owners were keen to find other ways of powering their pumps. Around the time Edmund Howes was writing, coal-fired steam power began to be used for the first time for pumping water out of mines. In a somewhat incestuous way, coal energy was being used for mining coal.
The Transformation of Manufacturing Methods
The first steam engines just moved a piston back and forth, which was all that was required to work a cylinder-type pump. It was only during the following century that the piston was attached to a crank to turn a revolving shaft, an innovation in response to a demand for rotary power from cotton mills unable to find additional sites for their waterwheels. This was the type of engine, of course, that powered the industrial revolution and, in my view, led with an alarming inevitability to the problems we have today. It was steam power, in fact, which made the widespread use of machines possible and then, for competitive reasons, absolutely necessary.
The essence of industrialization is that it produces lower-cost goods by using capital equipment and external energy to replace the skilled, and thus relatively expensive, labor used in handcrafts. Since less labor