Сделан первый шаг, но не все так просто. Некоторые считают, что в математике точность абсолютная, «дважды два четыре», независимо от каких бы то ни было обстоятельств, стран, личностей и чего-то другого. На самом деле были споры и до сих пор нет единого мнения о включении нуля во множество натуральных чисел. В нашей стране возобладало приведенное выше определение натуральных чисел, как возникших при счете и не имеющих в своем составе нуля. Существует и альтернативное определение натуральных чисел, как чисел обозначающих количество предметов. Вроде бы небольшая разница, но понятие количество допускает и отсутствие предметов, то есть нуль, а счет предполагает, что есть, что считать, а пустоту не считают. Это отступление сделано, чтобы подчеркнуть важность точного определения любого понятия. Измени его и многое меняется. Мы оставляем нулю невысокий статус просто цифры, используемой для позиционной записи чисел, но отказываем ему в высокой чести быть натуральным числом.
Расположение чисел в натуральном ряду позволяет сравнивать их по величине: число, отстоящее дальше от начала натурального ряда, больше числа, стоящего ближе к началу; число, стоящее правее в натуральном ряду чисел, больше любого числа, стоящего левее.
Не будь у нас натурального ряда чисел, мы бы не знали слова упорядочить. Натуральный ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, … – демонстрирует упорядочение по возрастанию в чистейшем виде.
Натуральные числа – это первые числа, которые придумал человек. Множество натуральных чисел ограничено с одной стороны, у него есть минимальное число – единица, но в сторону увеличения оно бесконечно и этим объясняется тот факт, что до сих пор все свойства этого множества чисел не изучены до конца и многие тайны скрыты в этом стройном ряду чисел.
Числа возникли из потребности счета различных предметов и сравнения количественных показателей различных совокупностей предметов. Число – это абстракция, используемая для количественной характеристики объектов, отвлекаясь от природы этих объектов. Возникновение понятия натурального числа было важнейшим моментом в развитии математики. Появилась возможность изучать сами числа независимо от тех задач, в связи с которыми они возникли. Говоря о натуральных числах, сразу же нужно говорить о действиях или математических операциях с числами. В самой природе построения натурального ряда чисел заложено действие прибавление единицы, так как каждое следующее натуральное число получается из предыдущего увеличением его на единицу. Это первое действие с числами. Если в языке вначале было слово, то в математике вначале была единица. Затем к ней прибавили еще единицу и получили число два. К двойке прибавили единицу