Натуральные числа. Этюды, вариации, упражнения. Владимир Валентинович Трошин. Читать онлайн. Newlib. NEWLIB.NET

Автор: Владимир Валентинович Трошин
Издательство: ЛитРес: Черновики
Серия:
Жанр произведения: Математика
Год издания: 2020
isbn:
Скачать книгу
к временам незапамятным. Чтобы не нарушать принятый в книге принцип давать классам чисел название в виде прилагательного, назовем такие числа палинромическими числами.

      В математике к понятию палиндрома нужен иной подход, нежели в языкознании, потому что, в отличие от слова, любое число, написанное произвольным набором цифр, имеет право на существование, например, 1234567890987654321 – вполне реальное число. А что в нем еще интересного, в чем его исключительность? Содержательная сторона, изюминка идеи отражения здесь отсутствует, посмотришь на это число, и скажешь: «Ну, и что?». Можно поставить вопрос так: найти квадраты целых чисел, которые неизменно читаются как слева направо, так и наоборот. Некоторые из них найти легко: 112=121, 1112=12321, 11112=1234321. Все получившиеся числа палиндромы, и данное правило применимо к любому числу единиц, не превосходящему девяти. Есть и другие случаи, но их найти труднее, например, 2642=69696, 8362=698896, 22852=5221225. Одним вопросом намечено целое направление для поиска числовых палиндромов с определенным смыслом. Есть палиндромы и среди кубов, например 113=1331, причем в большинстве случаев, если куб – палиндром, то и кубический корень из него – тоже палиндром. Поиск палиндромов среди пятых степеней, пока не дал результатов. Высказана гипотеза, согласно которой не существует чисел палиндромов вида xk при k>4 . Ее тоже кому-то нужно доказать или опровергнуть. Другой вопрос – сколько существует простых чисел палиндромов. Среди первых пятидесяти простых чисел я нашел шесть палиндромов: 11, 101, 131, 151, 181, 191. Сколько их всего – неизвестно! Высказывалось предположение о том, что простых чисел палиндромов бесконечно много, но эта гипотеза пока не доказана. Таким образом, в математике числовые палиндромы кроме своей специфической записи должны обладать каким-то еще интересным свойством, чтобы заслуживать внимание.

      В свою очередь среди чисел палиндромов выделяются так называемые моноцифровые числа. Это если определять их более-менее по-русски (хотя какое моно русское слово?). По-английски они называются репдигит или репдиджит в зависимости от того, как мы прочитаем английскую запись (от англ. repdigit – repeated digit – повторение цифры). Вы уже поняли, что это числа, в записи которых повторяется одна цифра: 11111, 222222, 33333. Среди них в свою очередь выделяются числа репьюниты – натуральные числа, запись которых состоит из единиц (от repeated unit - повторённая единица). Термин репьюнит был придуман в 1966 году Альбертом Х. Бейлером в его книге «Recreations in the theory of numbers: the queen of mathematics entertains». Для них принято сокращенное обозначение в виде Rn: R1=1, R2=11, R3=111 и т. д. Получаем последовательность: 1, 11; 111; 1111; 11111; 1111111 … . Обидно, но приходится употреблять эти неудобоваримые названия, которые неблагозвучны на русском языке и мне не очень нравятся, в отличие от самих чисел, вынужденных носить эти «репы». Для палиндромов придумали русское название – перевертень. Звучит хорошо, но почему-то не прижилось, а везде употребляется слово палиндром. Я ничего не имею против взаимопроникновения языков. Мне только не нравится, что в основном это они в нас проникают. В моноцифровых числах много интересного,