Popular scientific lectures. Ernst Mach. Читать онлайн. Newlib. NEWLIB.NET

Автор: Ernst Mach
Издательство: Bookwire
Серия:
Жанр произведения: Языкознание
Год издания: 0
isbn: 4057664594112
Скачать книгу
in the language of physics, when the social potential is a maximum.[5]

      You see, our miserly mercantile principle is replete with consequences.[6] The result of sober research, it has become as fruitful for physics as the dry questions of Socrates for science generally. If the principle seems to lack in ideality, the more ideal are the fruits which it bears.

      

      But why, tell me, should science be ashamed of such a principle? Is science[7] itself anything more than—a business? Is not its task to acquire with the least possible work, in the least possible time, with the least possible thought, the greatest possible part of eternal truth?

       Table of Contents

      Whoever has roamed through a beautiful country knows that the tourist's delights increase with his progress. How pretty that wooded dell must look from yonder hill! Whither does that clear brook flow, that hides itself in yonder sedge? If I only knew how the landscape looked behind that mountain! Thus even the child thinks in his first rambles. It is also true of the natural philosopher.

      The first questions are forced upon the attention of the inquirer by practical considerations; the subsequent ones are not. An irresistible attraction draws him to these; a nobler interest which far transcends the mere needs of life. Let us look at a special case.

      For a long time the structure of the organ of hearing has actively engaged the attention of anatomists. A considerable number of brilliant discoveries has been brought to light by their labors, and a splendid array of facts and truths established. But with these facts a host of new enigmas has been presented.

      Whilst in the theory of the organisation and functions of the eye comparative clearness has been attained; whilst, hand in hand with this, ophthalmology has reached a degree of perfection which the preceding century could hardly have dreamed of, and by the help of the ophthalmoscope the observing physician penetrates into the profoundest recesses of the eye, the theory of the ear is still much shrouded in mysterious darkness, full of attraction for the investigator.

      Look at this model of the ear. Even at that familiar part by whose extent we measure the quantity of people's intelligence, even at the external ear, the problems begin. You see here a succession of helixes or spiral windings, at times very pretty, whose significance we cannot accurately state, yet for which there must certainly be some reason.

      

Fig. 6.

      The shell or concha of the ear, a in the annexed diagram, conducts the sound into the curved auditory passage b, which is terminated by a thin membrane, the so-called tympanic membrane, e. This membrane is set in motion by the sound, and in its turn sets in motion a series of little bones of very peculiar formation, c. At the end of all is the labyrinth d. The labyrinth consists of a group of cavities filled with a liquid, in which the innumerable fibres of the nerve of hearing are imbedded. By the vibration of the chain of bones c, the liquid of the labyrinth is shaken, and the auditory nerve excited. Here the process of hearing begins. So much is certain. But the details of the process are one and all unanswered questions.

      To these old puzzles, the Marchese Corti, as late as 1851, added a new enigma. And, strange to say, it is this last enigma, which, perhaps, has first received its correct solution. This will be the subject of our remarks to-day.

      Corti found in the cochlea, or snail-shell of the labyrinth, a large number of microscopic fibres placed side by side in geometrically graduated order. According to Kölliker their number is three thousand. They were also the subject of investigation at the hands of Max Schultze and Deiters.

      A description of the details of this organ would only weary you, besides not rendering the matter much clearer. I prefer, therefore, to state briefly what in the opinion of prominent investigators like Helmholtz and Fechner is the peculiar function of Corti's fibres. The cochlea, it seems, contains a large number of elastic fibres of graduated lengths (Fig. 7), to which the branches of the auditory nerve are attached. These fibres, called the fibres, pillars, or rods of Corti, being of unequal length, must also be of unequal elasticity, and, consequently, pitched to different notes. The cochlea, therefore, is a species of pianoforte.

      

Fig. 7.

      What, now, may be the office of this structure, which is found in no other organ of sense? May it not be connected with some special property of the ear? It is quite probable; for the ear possesses a very similar power. You know that it is possible to follow the individual voices of a symphony. Indeed, the feat is possible even in a fugue of Bach, where it is certainly no inconsiderable achievement. The ear can pick out the single constituent tonal parts, not only of a harmony, but of the wildest clash of music imaginable. The musical ear analyses every agglomeration of tones.

      The eye does not possess this ability. Who, for example, could tell from the mere sight of white, without a previous experimental knowledge of the fact, that white is composed of a mixture of other colors? Could it be, now, that these two facts, the property of the ear just mentioned, and the structure discovered by Corti, are really connected? It is very probable. The enigma is solved if we assume that every note of definite pitch has its special string in this pianoforte of Corti, and, therefore, its special branch of the auditory nerve attached to that string. But before I can make this point perfectly plain to you, I must ask you to follow me a few steps into the dry domain of physics.

      Look at this pendulum. Forced from its position of equilibrium by an impulse, it begins to swing with a definite time of oscillation, dependent upon its length. Longer pendulums swing more slowly, shorter ones more quickly. We will suppose our pendulum to execute one to-and-fro movement in a second.

      

      This pendulum, now, can be thrown into violent vibration in two ways; either by a single heavy impulse, or by a number of properly communicated slight impulses. For example, we impart to the pendulum, while at rest in its position of equilibrium, a very slight impulse. It will execute a very small vibration. As it passes a third time its position of equilibrium, a second having elapsed, we impart to it again a slight shock, in the same direction with the first. Again after the lapse of a second, on its fifth passage through the position of equilibrium, we strike it again in the same manner; and so continue. You see, by this process the shocks imparted augment continually the motion of the pendulum. After each slight impulse, the pendulum reaches out a little further in its swing, and finally acquires a considerable motion.[8]

      But this is not the case under all circumstances. It is possible only when the impulses imparted synchronise with the swings of the pendulum. If we should communicate the second impulse at the end of half a second and in the same direction with the first impulse, its effects would counteract the motion of the pendulum. It is easily seen that our little impulses help the motion of the pendulum more and more, according as their time accords with the time of the pendulum. If we strike the pendulum in any other time than in that of its vibration, in some instances, it is true, we shall augment its vibration, but in others again, we shall obstruct it. Our impulses will be less effective the more the motion of our own hand departs from the motion of the pendulum.

      What is true of the pendulum holds true of every vibrating body. A tuning-fork when it sounds, also vibrates. It vibrates more rapidly when its sound is higher; more slowly when it is deeper. The standard A of our musical scale is produced by about four hundred and fifty vibrations in a second.

      I place by the side of each other on this table two tuning-forks, exactly alike, resting on resonant cases. I strike the first one a sharp blow, so that it emits a loud note, and immediately grasp it again with my hand to quench its note. Nevertheless, you still hear the note distinctly sounded, and by feeling it you may convince yourselves that the other fork which was not struck now vibrates.

      I now attach