Эволюция пустоты. Александр Борисович Жеуров. Читать онлайн. Newlib. NEWLIB.NET

Автор: Александр Борисович Жеуров
Издательство: ЛитРес: Черновики
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 2020
isbn:
Скачать книгу
это волновое излучение, приводя к выравниванию потенциала или же плотности измерения пространства.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0VFhEYIx8lJCIfIiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/2wBDAQoLCw4NDhwQEBw7KCIoOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozv/wAARCAD1AzYDASIAAhEBAxEB/8QAHAABAAMBAQEBAQAAAAAAAAAAAAMEBQIBBgcI/8QAXBAAAgEDAgMEBAgHDQMJBwQDAQIDAAQREiEFMUETIlFhBhRxkRUyUnKBobHRIzNCVZTB8AcWJDQ1VGJzdJKTstJWwuElNkNjdoKis/EmRFOEpLTTRmRllYOjw//EABYBAQEBAAAAAAAAAAAAAAAAAAABAv/EABYRAQEBAAAAAAAAAAAAAAAAAAABEf/aAAwDAQACEQMRAD8A/ZqUpQKUpQKUpQKUpQKUpQKUriWWOCMyTSLGi82c4A+mg7pWbwzj/DeMzzxcOuRci3IWSSMZQN4Z6mtKgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUrwkKCTyG5qL1qH5f1GgmpUPrUPy/qNPWofl/UaCalQ+tQ/L+o09ah+X9RoJqVD61D8v6jT1mH5f1GgmpUXrMXyvqNeetQ5xr+o0E1Kh9ah+X9Rp6zD8v6jQTUqL1mL5X1GvPWYfl/UaCalQ+sw9Hz7AaetQ/L+o0E1Kh9ah+X9Rp61D8v6jQTUqH1qH5f1GnrUPy/qNBNSovWYfl/Ua89ah+X9RoJqVD61D8v6jT1qH5f1GgmpUPrUPy/qNPWofl/UaCalQ+tQ/L+o176zD8v6jQS0qH1qH5f1GnrUPy/qNBNSofWofl/Ua6SaOQ4RsnnyoJKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQK8r2vKD4S8f0i4Nxvh0FpxyTjfErmTVe2DrHHFHBvmRRjKAEADLHVvzr7yvk+Eej/pJwqZ3PFOGzvPKZLieS0czS5OcatfIDYDGAAK3OM8asOA2DXl/MI0GyqBlpG6Ko5knwoJ+IOY+HXDrdx2jCJiLiQArEcbMc7YHOv5l4hxH0o9LvSGPhd1xSS8eaXRGVYrCy5xrUbDTtnlX7db8E4j6ZXUfEvSaM2/DEIe14Rn4x6PNjmf6PIV9G3o7wV7uO6bhVoZo0KK3YrspxkY+igq+jHCuF+i/AbbhVrPDiJe++sZdurH6a1vXLb+cxf3xUHwNwr82Wn+Av3UPB+FAZPDbP8AwF+6gn9btv5xF/fFDd2wODcRD/visR+H2XFJDDYWFpHbKcS3It0y3iqbfXWjDwDg8EKxR8LtAqDAzCp/VQWvXLb+cxf3xT1y2/nMX98VB8DcK/Nlp/gL91PgbhX5stP8BfuoJ/XLb+cxf3xT1u2xn1iL++Kzb+34NYqoPC7aWaQ4ihjgQs58tuXnyriy9G7PtfXL6xs2nIwsaQLoiHgNtz4k0Gr65bfzmL++KeuW385i/vioPgbhX5stP8Bfup8DcK/Nlp/gL91BP65bfzmL++Ket2384i/viq54PwlQS3DbMAcyYF2+qss8NseMMUtLC1hss4ecW66pfEJtsP6Xu8aDcN3bA4NxF/fFPXLb+cxf3xVaPgXCIYljj4XZqiAKo7BdgPorr4G4V+bLT/AX7qCf1y2/nMX98U9ctv5zF/fFQfA3CvzZaf4C/dVS9teD2mmNeFWs1xJ+LhSBct58th50Gok8MhxHKjnwVgakr5+HgsFnxG0vHgt1u3crmGMKsa4PdGB9Z519BQcS/iX+aaza0pfxL/NNZtVYUpSilKUoFVeJcStuEcNuOI3TFYLZC74GTgdAPHJA+mppZoYYWmmkVIlXUzk7AeNZ8ds/Fz63exMlsoIt7d9uYI7Rh0JGcDoDnmdiOuH8cs+IWUV5axXRinQSITbPkg8jy5V2/F4EcILa+LnlizlwfpK49557VkcON5HYcPu4be4dYkdp1SXAkBhBTC5weSKNtiD551bj1tOKQXUVpNJELd0cJMAA7MmO6TzwGGroD9NBKnEo3+Na3iHwa2b9QrmXi9vEgZ7e90kkZWymbl7FqlxK1uzeyz26SqrRqsRjlODLrU5Zc7AAY5YI1Z5its4znbfmMUFJOJxuN7W9Qcxqtn3HjyyOXXxpLxWCIZe3vMeKWUz/AGLV07NjljoKp3t69qy29qiy3cm8aHOFHV28FH18hvQZzel/DU43Bwkw34up4y6hrGRO6Op1KD05gYrQk4tBGpJgvDgb6LOVsdOi1lcSspbSO0SN3muJGczyKMPKMBnA8NgQAOm1aVg92l5cxT20qxSTSSRyNKGwuFHjkZYtgdAOlB4nGrZ3CiDiGSevD5x9ZSpJeLQRDLW94RjOUs5m+xTVPhC3aWk1tdWlwjP2kipLc6winACK+S3icncHPIaVHPAoL6B0F1HLG5tgbhZJNYDlzpCtk5AGR4kaM8qCyOOWuf4vxH/+tuP9FSfDFv2XadheadOr+JTZx7NOavfR7qdN/poM0cdtD/0HEPP/AJNuP9FVuC+lnDOPWLXvD0vGhDlC3qjnJHsBHu3qYStxyQqhxwyMkM387IO4H/V56/lYwO7uc31S6iFytpbzn8IWt0im7Nci6ZpN9gCcjI/KG3lQarcctUODBxD6OHXB8+iV6nGrV3CLDf5Jxvw+cD36K44lFd8Qs4Gt4Z450ulIKz6dIV+bYO6sBy3Pe5VFfi4vDw2dba5WJ8tc6Z9JijI+KUBw+eR5kAHG5BoLD8atUODDfHcju2E55HHRK8+HLX/4HEf/AOtuP9FWeGmccLtFuA4m7BNYc94HAzqxtnxxtmrP0UGc3GrZUDGDiGD/APx8/wDoqreelvCbCa1humu4Gu5RFD2tjLGGYkDGWUeIrSv7+Gwh1SBndzpjiRcvM3yQPt5AcyQN6yOJW80VnDfXYSS9e/tBkDUsCNcRqVXPXBILYBPPbAAD6DqR4U/VXz/BjxW3hsTdQ3cuuzghmLOMCfJEjHfO2WJPI42ztVuGG/t+PzzyzPcW13oSJBsLcrqJ2zjljJG5zy22DVxirFn+OPza+YtYOIRcTDNFPEkl47KrTGVOx0bkkk4JbSQNsZwBgE19PZ/jj82gu0pSohSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKDysDg/pUvGPSK+4SljPAtpCkyyzDSZQxIBC8wNuu/lX0FfL8O4feRfukcZ4g9u62s1lbpHKR3WYFsgeyg+opSvm+Nektwb1uCejkCXvFiO+7n8BaD5UhHXwUbmgtekHpNbcDEVukT3nEbna2sod5JD4+SjqTtVPg/ozcS3y8b9I5Uu+Jc4ol/E2g8EHU+LdacF9C14U8t5Lxe9ueJ3QHrV42jVIfBQVOlfBRyrW+C5vzvfe+P8A0UGhSs/4Lm/O9974/wDRUN3b+pQGafjV8qjYfiyWPgBo3NBpyyxwRNLK6pGg1MzHAA8aywJ+NsGOuDhvQbq9x5nqq/WfLrUh4Le8SKz8R4hexwqQ0NsTGSD8p+7gny5D21pfBc353vvfH/ooL0caRRrHGoRFGAqjAArqs/4Lm/O9974/9FPgub8733vj/wBFBoVQveINHL6pZIJ7xhnTnuxj5THoPLmazJY727uHtOGcWvSUOma6YRlIvEDud5vLkOvgbltwD1RCsPFL4Fm1OxaMs58SSm9BaseHras08rme6l/GTN9gHQeVXKz/AILm/O9974/9FPgub8733vj/ANFBoVHPPFbQPPPIscaDLOxwAKy7yD1GHtZuM3+5wqr2ZZz0AGjc1Vg4FfX8iXXE+JXihCGgtQYyIz8pzpwzfUOnjQXFjn4ywkmV4bDmkRGHm828F8vf4VqqqooVQFUDAAGwqh8Fzfne+98f+inwXN+d773x/wCig0KVn/Bk353vvfH/AKKyL316aK4XhvFr0LCpMl04jKAj8lRp7x+oUGvd8QftzZWCrNd4BbJ7kIPVv1DmfrqWysEtNUjOZriT8ZM/NvuHkK94faw2tmiQppDDUxJyWY8yT1NWqCle/wAasv60/wCU1dqle/xqy/rT/lNXaDiX8S/zTWbWlL+Jf5prNqrClBuNhSilcTTRW8LzTSJHEgJZ2OAAOtc3NzBZ28lxdSpDDEuqR3OAo8zWPBeWnGJY765u7X1Je/aQdsPwnhK4PvVeg3O+ykWoYpuKzC7u4nS1Qhre2cYLHpJIPHwXpzO+ANCfKwuy4JCsRmojxCx6XltzP/Sr9/nXE97ZvbyIL23yyEfjV8PbQecGyOCWA6C2jAB+aKuEcsH66zeF8Qsm4TZt63bjNuhx2q7d0edWvhCy/nlv/ir99FiwMnmTQ90ZO3UGq44hYn/3y3P/APlX76pXvpDYW7+q213bXHEHTVFbicDPPdiM6VGNz7snAolWr+8aDTb26LNeSj8HGxIA8WfHJR19w3IFe2lklprkLGa5mbVNMdi5xy8gOgHL3moLOSxtQ8knELeS5lOZ5TKo1noAM7KOg6eZyTZ9fsj/AO+Qf4q/fQRXMeri1iwP4sSsPM4C/rq4BgfTWbccRsk4nZr65b4YSIPwq+APj/RPvq38IWX88t/8VfvosWcnOx5HNeY2wM8+VQevWf8AO4P8QVxJxPh6RO731sqqpJJlXYe+gs8/E58KypVbjcj25yvDYyRIeRujncDwj6E/lchtkmNOMWXHGZLa9hbh42eZZQO3bqinngdW+jocaK31gqKiXVugQacCVRgdABnl91EWB3YwukAAYwuwFQ2Z/AOMbGaXr/1jUF9Z5/jcHmO1X76q8P4naNDKpuoAVuJhvIB/0jffQaJGWz5dKZzzG551X9fs/wCeQf4q/fXvr1p/OoP8QUVMB9A9tRXVzHaw631EsdKIo7zt0A8/uJOwNVLvj/CrKSKOW/g7aY6YYlcM8rbbKBuTkj31JZwSNL65fAG4ZcKgOVhXnpHidhluvsojy0sW7duIXbB7lxhd8iBPkL59S3U+wAOMRJLYosmSBd2zjG+4nQj6wKvAHVtn2DnWfxmZLewidwzBry2UY8WnjUH2b0GhjG+2fOvcnx264oedeUWHMZJOasWf44/NqvViz/HH5tCrtKUqMlKUoFKUoFK8qOScIpwpdsbKOZoJKj9YjLMqsGKnvYPxfb4VWuZ5g5WKSHUeaMpJGx8/ZXA9bDKkrRMM5YIpAA+knP0eVBaW6icEowIGQTkYB8K9e4VVDAFgTgYrNEViimJ4oCGIJAYZJ6Z8/P212VkXs+xswAi9450Y5bDbyHTeguC9XXpMTgD4zHGF9v7dK6kukjdUxqLb7HZR4nyrOhWdGkaSHskOW0odbY8QBvuB7eQrxoFmkLv67GWZcxlsKoz0GdI254oNF7yNEL7sAD8UZJxzx415FfRTMyxrIxUkHMbLnpsSADyqtI6WsaTPINDBVJOQGydtzk8ztnxr1HLTEGKQawE0g77Z3PgOfnQXkk1IGIxkZ58q5adQpYAtg47vj4VTaSY/ge0i0Du4aMknHPAyCfH9dRdq7RmSdleMHBEcRwqkEbHfPjkeQGc7hopOj40sCGHdIYHV7K8kuVj6E+w+37qyjFYPiOeKF+8SFVwRnGRjJ55B/X5zziRn0pa9ojFR3u6NjscY6Hf6DQXBdqXCshTIyCxGD9dd9uhIAywIzkDIxWdEtxpzNbi3Gn8ljISd9uXLc77DeuFtzKS0qXKt2hJy34vkxxvvv4A9PCg0nu4owC2oDf8AJO1Rw8RguYneAO+g4OUZd8Z6gVCzwWgKOV7xwEU6mbwG+5Pl4CvGd7rWp1LBjVlRz589s+HLPKg0Na6QxIGfE1G1wqEAjAPJun7feKpNNMUDdpb9zkGQ7Z5dfqriUB4xHc6Jta6syRlVJGc58Bg8j4ee4aXarvyGnnk8h41G10FOBGx9mKowpZtN23ZBpo1ByuliuQfA56fdXEiXDMVNjqXvbNLjbI1AEDrz88Gg0o7pHLAjQV2wxG++K69YUBiQQFOMkVnsLjsiZICHbOI4ueMHfVnzPnXMFoG0sRcgsu5kYrq26+zzoLs3ELe3UtKWUDqFJH1V1HeRzJFJGGKS/FZhp6Z5HeoGu4YmClkd+ZAIwnmfAbczXKMzsLqZwAvIAnHI+Q6Hw6e4NAsAMnYedRmdFPeOkbAEkb55YqiZbrOI7mBgThm0k4/8X2daiusCIxzaWIII7RdO2MbZ5nfz6+IADTWdHUMGBz0BB38K49aJG0LnbO2DVGKGzecSpGJJwpBYYYgA7Dx6/wDGoOzuZIwIrFgeSs8mllC5xn39PE79aDXjuFkj1lSg32bAO3X6q8N5CFVmfSGOAXBX7aozIdAUwSKz51dgPi5O+Dz6jOOfvrhbdXugrGdxudLnCseRPPz670F6biFvbn8KWAwDkITzOByFWEcOMgEDzGKzvWdOE7LtyJSoxjCANgn6NqntGZ5315LqMFgTp+ge/wB1BcpSlApSvnfTjid1wr0caSzkMU088VuJB8ZNbBdQ8xnag+ipXxMayejfp5wbhlpd3Mlnxa2n7WK4maQCSMBg6liSCRsRyx0r7agV4SFUsxAAGST0qC9vrXhtnLeXs6W9vCup5JDgKK+QkXjfpwFlWI8P4BnKwzakmvh4tjdI+W3M+zFBcuOL33pPcPYej0pgs0bRc8TxkeaxeJ8+Qrc4Rwax4HZC0sYtCZ1OxOWkbqzHmSfGobe34naW6W9tBw+GGMaURAwCjwAqXPGvk2Pveg0KVn5418mx971Rm4jxlro2VoljLcAd9svphHQsfHy50GlfcRSzKRKjTXMu0cKc28z4DzNR2vD3acXt+wluh8VR8SEeCjx8+dVLKw4rZ63/AIHLPLvJM5fU/wBw8qt5418mx970GhSs/PGvk2Pveobq84lY27T3L2Eca4GSXJJPIAcyT0AoNR3WNGd2CqoySTgAVll7jjR0xM9vYcmkHdeb5vyV8+dU/VeOcUMc97FaRwjvJasW59C/if6PIVoj4ZAwFsfe9BdggitYEggjWOKMYVFGABUlZ+eNfJsfe9M8a+TY+96DQqne8QW2dIIkM9zJ8SJfDxPgPOsyXiHGp7iSxsBYvOgxJN3ykB6Z+U39EfTipbKw4nYhii2byyHMszly0h8z+rkKC3Z8PZJfW7xxPdkYDY7sY+So6e3mav1n5418mx970zxr5Nj73oNCuJZY4Y2llcIijLMxwAKy7u94lYwGa4Nkq5wANZLHoAOp8qh4YLnjDPPxVFT1eYqlqhygI5M3ifqFBY/D8ZO2u3sP7sk/+lfrPlVm+ijh4PPFEgREhYKqjAAxVyqvEv5Muf6pvsoJrf8Ai0XzB9lSVHb/AMWi+YPsqSgpXv8AGrL+tP8AlNXax5eILd8UtY7aMyQxysHnzhdWk91fleZ5Ctig4l/Ev801icRFyeGXQsyBc9i/Y5+XpOn68Vty/iX+aazaqsiwkuo76RfU702kwhSFpnDBQIySxBbI5AHIBLHrUtl61Ff3cc8UzR3E7SQu0gZVUIm3PYFtW2K0eec559Oteg9CBvQfIcWtbubgt7b3kV2YmS9LiebWrRlgyHZiM506eqgEbV9TDZW1taR2MMKraxII0hxlQowAMfr51U4//wA3b7ngQNgZ8jWifjfRQVvg+xP/ALlb/wCEtevaWsVvJpt4Quk5AQDO1WKjuP4tKBz0H7KDP4RY2T8FsGNpAxNtEctEu/dFXlsrRGDLawKwOQRGAQai4UAOD2Sr0t4wP7oq3QQNZWcjl3s4GY82MYJP01gX3CLH99tncfBsOBHiYxxDJTJxny16foJ6Zr6bGdjVDP8A7Qqd/w