Henley's Twentieth Century Formulas, Recipes and Processes. Various. Читать онлайн. Newlib. NEWLIB.NET

Автор: Various
Издательство: Bookwire
Серия:
Жанр произведения: Языкознание
Год издания: 0
isbn: 4057664126917
Скачать книгу
8 10 8 266° F. 2.5 V. 8 12 8 270° F. 3 VI. 8 16 14 280° F. 3.5 VII. 8 16 12 285° F. 4 VIII. 8 22 24 309° F. 5 IX. 8 32 36 320° F. 6 X. 8 32 28 330° F. 7 XI. 8 30 24 340° F. 8

      Lipowitz Metal.

      —This amalgam is prepared as follows: Melt in a dish, cadmium, 3 parts, by weight; tin, 4 parts; bismuth, 15 parts; and lead, 8 parts, adding to the alloy, while still in fusion, 2 parts of quicksilver previously heated to about 212° F. The amalgamation proceeds easily and smoothly. The liquid mass in the dish, which should be taken from the fire immediately upon the introduction of the mercury, is stirred until the contents solidify. While Lipowitz alloy softens already at 140° F. and fuses perfectly at 158°, the amalgam has a still lower fusing point, which lies around 143 3/5° F.

      This amalgam is excellently adapted for the production of impressions of various objects of nature, direct impressions of leaves, and other delicate parts of plants having been made with its aid which, in point of sharpness, are equal to the best plaster casts and have a very pleasing appearance. The amalgam has a silver-white color and a fine gloss. It is perfectly constant to atmospheric influences. This amalgam has also been used with good success for the making of small statuettes and busts, which are hollow and can be readily gilt or bronzed by electro-deposition. The production of small statues is successfully carried out by making a hollow gypsum mold of the articles to be cast and heating the mold evenly to about 140° F. A corresponding quantity of the molten amalgam is then poured in and the mold moved rapidly to and fro, so that the alloy is thrown against the sides all over. The shaking should be continued until it is certain that the amalgam has solidified. When the mold has cooled off it is taken apart and the seams removed by means of a sharp knife. If the operation is carried on correctly, a chasing of the cast mass becomes unnecessary, since the alloy fills out the finest depressions of the mold with the greatest sharpness.

      Amalgam For Plaster.

      —Tin, 1 part; bismuth, 1 part; mercury, 1 part. Melt the bismuth and the tin together, and when the two metals are in fusion add the mercury while stirring. For use, rub up the amalgam with a little white of egg and brush like a varnish on the plaster articles.

      Plastic Metal Composition.

      —I. Copper oxide is reduced by means of hydrogen or copper sulphate by boiling a solution of the same in water with some zinc filings in order to obtain entirely pure copper. Of the copper powder obtained in this manner, 20, 30, or 36 parts, by weight, according to the degree of hardness desired for the composition (the greater the quantity of copper used the harder will the composition become), are thoroughly moistened in a cast-iron or porcelain mortar with sulphuric acid of 1.85 specific gravity; 70 parts, by weight, of mercury are then added to this paste, the whole being constantly stirred. When all the copper has been thoroughly amalgamated with the mercury, the sulphuric acid is washed out again with boiling water, and in 12 hours after it has become cold the composition will be so hard that it can be polished. It is impervious to the action of dilute acids, alcohol, ether, and boiling water. It contains the same specific gravity, alike in the soft or the hard condition. When used as a cement, it can at any time be rendered soft and plastic in the following manner: If applied while hot and plastic to the deoxidized surfaces of two pieces of metal, these latter will unite so firmly that in about 10 or 12 hours the metal may be subjected to any mechanical process. The properties of this composition render it very useful for various purposes, and it forms a most effective cement for fine metal articles which cannot be soldered in fire.

      II.—Bismuth, 5.5 parts; lead, 3; tin, 1.5.

      III. Alloy d’Homburg.—Bismuth, {66} 3 parts; lead, 3; tin, 3. This alloy is fusible at 251° F., and is of a silvery white. It is employed for reproductions of medals.

      IV. Alloy Valentine Rose.—Bismuth, 4 to 6 parts; lead, 2 parts; tin, 2 to 3 parts. This alloy fuses at 212° to 250° F.

      V. Alloy Rose père.—Bismuth, 2 parts; lead, 2; tin, 2. This alloy fuses at 199° F.

      The remainder are plastic alloys for reproducing cuts, medals, coins, etc.:

      VI.—Bismuth, 4 parts; lead, 2 parts; tin, 1 part.

      VII.—Bismuth, 3 parts; lead, 3 parts; tin, 2 parts.

      VIII.—Bismuth, 4 parts; lead, 2 parts; tin, 2 parts.

      IX.—Bismuth, 5 parts; lead, 2 parts; tin, 3 parts.

      X.—Bismuth, 2 parts; lead, 2 parts; tin, 2 parts.

      Quick-water.

      —That the amalgam may easily take hold of bronze objects and remain there, it is customary to cover the perfectly cleansed and shining article with a thin coat of mercury, which is usually accomplished by dipping it into a so-called quick-water bath.

      In the form of minute globules the mercury immediately separates itself from the solution and clings to the bronze object, which thereupon presents the appearance of being plated with silver. After it has been well rinsed in clean water, the amalgam may be evenly and without difficulty applied with the scratch brush.

      This quick-water (in reality a solution of mercurous nitrate), is made in the simplest manner by taking 10 parts of mercury and pouring over it 11 parts of nitric acid of a specific gravity equal to 1.33; now let it stand until every part of the mercury is dissolved; then, while stirring vigorously, add 540 parts of water. This solution must be kept in closed flasks or bottles to prevent impurities, such as dust, etc., from falling into it.

      The preparatory work on the object to be gilded consists mainly in cleansing it from every trace of oxidation. First, it must be well annealed by placing it in a bed of glowing coal, care being exercised that the heating be uniform. When cooled, this piece is plunged into a highly diluted sulphuric-acid bath in order to dissolve in a measure the oxide. Next it is dipped in a 36° nitric-acid bath, of a specific gravity equal to 1.33, and brushed off with a long brush; it is now dipped into nitric acid into which a little lampblack and table salt have been thrown. It is now ready for washing in clean water and drying in unsoiled sawdust. It is of the greatest importance that the surface to be gilded should appear of a pale yellow tint all over. If it be too smooth the gold will not take hold easily, and if it be