What special functions, besides his uses to man, are assigned to the whale in the economy of nature, we do not know; but some considerations, suggested by the character of the food upon which certain species subsist, deserve to be specially noticed. None of the great mammals grouped under the general name of whale are rapacious. They all live upon small organisms, and the most numerous species feed almost wholly upon the soft gelatinous mollusks in which the sea abounds in all latitudes. We cannot calculate even approximately the number of the whales, or the quantity of organic nutriment consumed by an individual, and of course we can form no estimate of the total amount of animal matter withdrawn by them, in a given period, from the waters of the sea. It is certain, however, that it must have been enormous when they were more abundant, and that it is still very considerable. A very few years since, the United States had more than six hundred whaling ships constantly employed in the Pacific, and the product of the American whale fishery for the year ending June 1st, 1860, was seven millions and a half of dollars.[99] The mere bulk of the whales destroyed in a single year by the American and the European vessels engaged in this fishery would form an island of no inconsiderable dimensions, and each one of those taken must have consumed, in the course of his growth, many times his own weight of mollusks. The destruction of the whales must have been followed by a proportional increase of the organisms they feed upon, and if we had the means of comparing the statistics of these humble forms of life, for even so short a period as that between the years 1760 and 1860, we should find a difference sufficient, possibly, to suggest an explanation of some phenomena at present unaccounted for.
For instance, as I have observed in another work,[100] the phosphorescence of the sea was unknown to ancient writers, or at least scarcely noticed by them, and even Homer—who, blind as tradition makes him when he composed his epics, had seen, and marked, in earlier life, all that the glorious nature of the Mediterranean and its coasts discloses to unscientific observation—nowhere alludes to this most beautiful and striking of maritime wonders. In the passage just referred to, I have endeavored to explain the silence of ancient writers with respect to this as well as other remarkable phenomena on psychological grounds; but is it not possible that, in modern times, the animalculæ which produce it may have immensely multiplied, from the destruction of their natural enemies by man, and hence that the gleam shot forth by their decomposition, or by their living processes, is both more frequent and more brilliant than in the days of classic antiquity?
Although the whale does not prey upon smaller creatures resembling himself in form and habits, yet true fishes are extremely voracious, and almost every tribe devours unsparingly the feebler species, and even the spawn and young of its own. The enormous destruction of the pike, the trout family, and other ravenous fish, as well as of the fishing birds, the seal, and the otter, by man, would naturally have occasioned a great increase in the weaker and more defenceless fish on which they feed, had he not been as hostile to them also as to their persecutors. We have little evidence that any fish employed as human food has naturally multiplied in modern times, while all the more valuable tribes have been immensely reduced in numbers.[101] This reduction must have affected the more voracious species not used as food by man, and accordingly the shark, and other fish of similar habits, though not objects of systematic pursuit, are now comparatively rare in many waters where they formerly abounded. The result is, that man has greatly reduced the numbers of all larger marine animals, and consequently indirectly favored the multiplication of the smaller aquatic organisms which entered into their nutriment. This change in the relations of the organic and inorganic matter of the sea must have exercised an influence on the latter. What that influence has been, we cannot say, still less can we predict what it will be hereafter; but its action is not for that reason the less certain.
Introduction and Breeding of Fish.
The introduction and successful breeding of fish of foreign species appears to have been long practised in China and was not unknown to the Greeks and Romans. This art has been revived in modern times, but thus far without any important results, economical or physical, though there seems to be good reason to believe it may be employed with advantage on an extended scale. As in the case of plants, man has sometimes undesignedly introduced new species of aquatic animals into countries distant from their birthplace. The accidental escape of the Chinese goldfish from ponds where they were bred as a garden ornament, has peopled some European, and it is said American streams with this species. Canals of navigation and irrigation interchange the fish of lakes and rivers widely separated by natural barriers, as well as the plants which drop their seeds into the waters. The Erie Canal, as measured by its own channel, has a length of about three hundred and sixty miles, and it has ascending and descending locks in both directions. By this route, the fresh-water fish of the Hudson and the Upper Lakes, and some of the indigenous vegetables of these respective basins, have intermixed, and the fauna and flora of the two regions have now more species common to both than before the canal was opened. Some accidental attraction not unfrequently induces fish to follow a vessel for days in succession, and they may thus be enticed into zones very distant from their native habitat. Several years ago, I was told at Constantinople, upon good authority, that a couple of fish, of a species wholly unknown to the natives, had just been taken in the Bosphorus. They were alleged to have followed an English ship from the Thames, and to have been frequently observed by the crew during the passage, but I was unable to learn their specific character.
Many of the fish which pass the greater part of the year in salt water spawn in fresh, and some fresh-water species, the common brook trout of New England for instance, which, under ordinary circumstances, never visit the sea, will, if transferred to brooks emptying directly into the ocean, go down into the salt water after spawning time, and return again the next season. Sea fish, the smelt among others, are said to have been naturalized in fresh water, and some naturalists have argued from the character of the fish of Lake Baikal, and especially from the existence of the seal in that locality, that all its inhabitants were originally marine species, and have changed their habits with the gradual conversion of the saline waters of the lake—once, as is assumed, a maritime bay—into fresh.[102] The presence of the seal is hardly conclusive on this point, for it is sometimes seen in Lake Champlain at the distance of some hundreds of miles from even brackish water. One of these animals was killed on the ice in that lake in February, 1810, another in February, 1846,[103] and remains of the seal have been found at other times in the same waters.
The remains of the higher orders of aquatic animals are generally so perishable that, even where most abundant, they do not appear to be now forming permanent deposits of any considerable magnitude; but it is quite otherwise with shell fish, and, as we shall see hereafter, with many of the minute limeworkers of the sea. There are, on the southern coast of the United States, beds of shells so extensive that they were formerly supposed to have been naturally accumulated, and were appealed to as proofs of an elevation of the coast by geological causes; but they are now ascertained to have been derived from oysters, consumed in the course of long ages by the inhabitants of Indian towns. The planting of a bed of oysters in a new locality might, very probably, lead, in time, to the formation of a bank, which, in connection with other deposits, might perceptibly affect the line of a coast, or, by changing the course of marine currents, or the outlet of a river, produce geographical changes of no small importance. The transplantation of oysters to artificial ponds has