Thus, by the original mechanical force expended in the collision, at least five, and often more, different kinds of changes have been produced. Take, again, the lighting of a candle. Primarily this is a chemical change consequent on a rise of temperature. The process of combination having once been set going by extraneous heat, there is a continued formation of carbonic acid, water, &c.—in itself a result more complex than the extraneous heat that first caused it. But accompanying this process of combination there is a production of heat; there is a production of light; there is an ascending column of hot gases generated; there are currents established in the surrounding air. Moreover, the decomposition of one force into many forces does not end here: each of the several changes produced becomes the parent of further changes. The carbonic acid given off will by and by combine with some base; or under the influence of sunshine give up its carbon to the leaf of a plant. The water will modify the hygrometric state of the air around; or, if the current of hot gases containing it come against a cold body, will be condensed: altering the temperature, and perhaps the chemical state, of the surface it covers. The heat given out melts the subjacent tallow, and expands whatever it warms. The light, falling on various substances, calls forth from them reactions by which it is modified; and so divers colours are produced. Similarly even with these secondary actions, which may be traced out into ever-multiplying ramifications, until they become too minute to be appreciated. And thus it is with all changes whatever. No case can be named in which an active force does not evolve forces of several kinds, and each of these, other groups of forces. Universally the effect is more complex than the cause.
Doubtless the reader already foresees the course of our argument. This multiplication of results, which is displayed in every event of to-day, has been going on from the beginning; and is true of the grandest phenomena of the universe as of the most insignificant. From the law that every active force produces more than one change, it is an inevitable corollary that through all time there has been an ever-growing complication of things. Starting with the ultimate fact that every cause produces more than one effect, we may readily see that throughout creation there must have gone on, and must still go on, a never-ceasing transformation of the homogeneous into the heterogeneous. But let us trace out this truth in detail.[B]
Without committing ourselves to it as more than a speculation, though a highly probable one, let us again commence with the evolution of the solar system out of a nebulous medium.[C] From the mutual attraction of the atoms of a diffused mass whose form is unsymmetrical, there results not only condensation but rotation: gravitation simultaneously generates both the centripetal and the centrifugal forces. While the condensation and the rate of rotation are progressively increasing, the approach of the atoms necessarily generates a progressively increasing temperature. As this temperature rises, light begins to be evolved; and ultimately there results a revolving sphere of fluid matter radiating intense heat and light—a sun.
There are good reasons for believing that, in consequence of the high tangential velocity, and consequent centrifugal force, acquired by the outer parts of the condensing nebulous mass, there must be a periodical detachment of rotating rings; and that, from the breaking up of these nebulous rings, there must arise masses which in the course of their condensation repeat the actions of the parent mass, and so produce planets and their satellites—an inference strongly supported by the still extant rings of Saturn.
Should it hereafter be satisfactorily shown that planets and satellites were thus generated, a striking illustration will be afforded of the highly heterogeneous effects produced by the primary homogeneous cause; but it will serve our present purpose to point to the fact that from the mutual attraction of the particles of an irregular nebulous mass there result condensation, rotation, heat, and light.
It follows as a corollary from the Nebular Hypothesis, that the Earth must at first have been incandescent; and whether the Nebular Hypothesis be true or not, this original incandescence of the Earth is now inductively established—or, if not established, at least rendered so highly probable that it is a generally admitted geological doctrine. Let us look first at the astronomical attributes of this once molten globe. From its rotation there result the oblateness of its form, the alternations of day and night, and (under the influence of the moon) the tides, aqueous and atmospheric. From the inclination of its axis, there result the precession of the equinoxes and the many differences of the seasons, both simultaneous and successive, that pervade its surface. Thus the multiplication of effects is obvious. Several of the differentiations due to the gradual cooling of the Earth have been already noticed—as the formation of a crust, the solidification of sublimed elements, the precipitation of water, &c.,—and we here again refer to them merely to point out that they are simultaneous effects of the one cause, diminishing heat.
Let us now, however, observe the multiplied changes afterwards arising from the continuance of this one cause. The cooling of the Earth involves its contraction. Hence the solid crust first formed is presently too large for the shrinking nucleus; and as it cannot support itself, inevitably follows the nucleus. But a spheroidal envelope cannot sink down into contact with a smaller internal spheroid, without disruption; it must run into wrinkles as the rind of an apple does when the bulk of its interior decreases from evaporation. As the cooling progresses and the envelope thickens, the ridges consequent on these contractions must become greater, rising ultimately into hills and mountains; and the later systems of mountains thus produced must not only be higher, as we find them to be, but they must be longer, as we also find them to be. Thus, leaving out of view other modifying forces, we see what immense heterogeneity of surface has arisen from the one cause, loss of heat—a heterogeneity which the telescope shows us to be paralleled on the face of the moon, where aqueous and atmospheric agencies have been absent.
But we have yet to notice another kind of heterogeneity of surface similarly and simultaneously caused. While the Earth's crust was still thin, the ridges produced by its contraction must not only have been small, but the spaces between these ridges must have rested with great evenness upon the subjacent liquid spheroid; and the water in those arctic and antarctic regions in which it first condensed, must have been evenly distributed. But as fast as the crust grew thicker and gained corresponding strength, the lines of fracture from time to time caused in it, must have occurred at greater distances apart; the intermediate surfaces must have followed the contracting nucleus with less uniformity; and there must have resulted larger areas of land and water. If any one, after wrapping up an orange in wet tissue paper, and observing not only how small are the wrinkles, but how evenly the intervening spaces lie upon the surface of the orange, will then wrap it up in thick cartridge-paper, and note both the greater height of the ridges and the much larger spaces throughout which the paper does not touch the orange, he will realize the fact, that as the Earth's solid envelope grew thicker, the areas of elevation and depression must have become greater. In place of islands more or less homogeneously scattered over an all-embracing sea, there must have gradually arisen heterogeneous arrangements of continent and ocean, such as we now know.
Once more, this double change in the extent and in the elevation of the lands, involved yet another species of heterogeneity, that of coast-line. A tolerably even surface raised out of the ocean, must have a simple, regular sea-margin; but a surface varied by table-lands and intersected by mountain-chains must, when raised out of the ocean, have an outline extremely irregular both in its leading features and in its details. Thus endless is the accumulation of geological and geographical results slowly brought about by this one cause—the contraction of the Earth.
When we pass from the agency which geologists term igneous, to aqueous and atmospheric agencies, we see the like ever-growing complications of effects. The denuding actions of air and water have, from the beginning, been modifying every exposed surface; everywhere causing many different changes. Oxidation,