Now, we propose in the first place to show, that this law of organic progress is the law of all progress. Whether it be in the development of the Earth, in the development of Life upon its surface, in the development of Society, of Government, of Manufactures, of Commerce, of Language, Literature, Science, Art, this same evolution of the simple into the complex, through successive differentiations, holds throughout. From the earliest traceable cosmical changes down to the latest results of civilization, we shall find that the transformation of the homogeneous into the heterogeneous, is that in which Progress essentially consists.
With the view of showing that if the Nebular Hypothesis be true, the genesis of the solar system supplies one illustration of this law, let us assume that the matter of which the sun and planets consist was once in a diffused form; and that from the gravitation of its atoms there resulted a gradual concentration. By the hypothesis, the solar system in its nascent state existed as an indefinitely extended and nearly homogeneous medium—a medium almost homogeneous in density, in temperature, and in other physical attributes. The first advance towards consolidation resulted in a differentiation between the occupied space which the nebulous mass still filled, and the unoccupied space which it previously filled. There simultaneously resulted a contrast in density and a contrast in temperature, between the interior and the exterior of this mass. And at the same time there arose throughout it rotatory movements, whose velocities varied according to their distances from its centre. These differentiations increased in number and degree until there was evolved the organized group of sun, planets, and satellites, which we now know—a group which presents numerous contrasts of structure and action among its members. There are the immense contrasts between the sun and planets, in bulk and in weight; as well as the subordinate contrasts between one planet and another, and between the planets and their satellites. There is the similarly marked contrast between the sun as almost stationary, and the planets as moving round him with great velocity; while there are the secondary contrasts between the velocities and periods of the several planets, and between their simple revolutions and the double ones of their satellites, which have to move round their primaries while moving round the sun. There is the yet further strong contrast between the sun and the planets in respect of temperature; and there is reason to suppose that the planets and satellites differ from each other in their proper heat, as well as in the heat they receive from the sun.
When we bear in mind that, in addition to these various contrasts, the planets and satellites also differ in respect to their distances from each other and their primary; in respect to the inclinations of their orbits, the inclinations of their axes, their times of rotation on their axes, their specific gravities, and their physical constitutions; we see what a high degree of heterogeneity the solar system exhibits, when compared with the almost complete homogeneity of the nebulous mass out of which it is supposed to have originated. Passing from this hypothetical illustration, which must be taken for what it is worth, without prejudice to the general argument, let us descend to a more certain order of evidence. It is now generally agreed among geologists that the Earth was at first a mass of molten matter; and that it is still fluid and incandescent at the distance of a few miles beneath its surface. Originally, then, it was homogeneous in consistence, and, in virtue of the circulation that takes place in heated fluids, must have been comparatively homogeneous in temperature; and it must have been surrounded by an atmosphere consisting partly of the elements of air and water, and partly of those various other elements which assume a gaseous form at high temperatures. That slow cooling by radiation which is still going on at an inappreciable rate, and which, though originally far more rapid than now, necessarily required an immense time to produce any decided change, must ultimately have resulted in the solidification of the portion most able to part with its heat—namely, the surface. In the thin crust thus formed we have the first marked differentiation. A still further cooling, a consequent thickening of this crust, and an accompanying deposition of all solidifiable elements contained in the atmosphere, must finally have been followed by the condensation of the water previously existing as vapour. A second marked differentiation must thus have arisen: and as the condensation must have taken place on the coolest parts of the surface—namely, about the poles—there must thus have resulted the first geographical distinction of parts. To these illustrations of growing heterogeneity, which, though deduced from the known laws of matter, may be regarded as more or less hypothetical, Geology adds an extensive series that have been inductively established. Its investigations show that the Earth has been continually becoming more heterogeneous in virtue of the multiplication of the strata which form its crust; further, that it has been becoming more heterogeneous in respect of the composition of these strata, the latter of which, being made from the detritus of the older ones, are many of them rendered highly complex by the mixture of materials they contain; and that this heterogeneity has been vastly increased by the action of the Earth's still molten nucleus upon its envelope, whence have resulted not only a great variety of igneous rocks, but the tilting up of sedimentary strata at all angles, the formation of faults and metallic veins, the production of endless dislocations and irregularities. Yet again, geologists teach us that the Earth's surface has been growing more varied in elevation—that the most ancient mountain systems are the smallest, and the Andes and Himalayas the most modern; while in all probability there have been corresponding changes in the bed of the ocean. As a consequence of these ceaseless differentiations, we now find that no considerable portion of the Earth's exposed surface is like any other portion, either in contour, in geologic structure, or in chemical composition; and that in most parts it changes from mile to mile in all these characteristics.
Moreover, it must not be forgotten that there has been simultaneously going on a gradual differentiation of climates. As fast as the Earth cooled and its crust solidified, there arose appreciable differences in temperature between those parts of its surface most exposed to the sun and those less exposed. Gradually, as the cooling progressed, these differences became more pronounced; until there finally resulted those marked contrasts between regions of perpetual ice and snow, regions where winter and summer alternately reign for periods varying according to the latitude, and regions where summer follows summer with scarcely an appreciable variation. At the same time the successive elevations and subsidences of different portions of the Earth's crust, tending as they have done to the present irregular distribution of land and sea, have entailed various modifications of climate beyond those dependent on latitude; while a yet further series of such modifications have been produced by increasing differences of elevation in the land, which have in sundry places brought arctic, temperate, and tropical climates to within a few miles of each other. And the general result of these changes is, that not only has every extensive region its own meteorologic conditions, but that every locality in each region differs more or less from others in those conditions, as in its structure, its contour, its soil. Thus, between our existing Earth, the phenomena of whose varied crust neither geographers, geologists, mineralogists, nor meteorologists have yet enumerated, and the molten globe out of which it was evolved, the contrast in heterogeneity is sufficiently striking.
When from the Earth itself we turn to the plants and animals that have lived, or still live, upon its surface, we find ourselves in some difficulty from lack of facts. That every existing organism has been developed out of the simple into the complex, is indeed the first established truth of all; and that every organism that has existed was similarly developed, is an inference which no physiologist will hesitate to draw. But when we pass from individual forms of life to Life in general, and inquire whether the same law is seen in the ensemble of its manifestations,—whether modern plants and animals are of more heterogeneous structure than ancient ones, and whether the Earth's present Flora and Fauna are more heterogeneous than the Flora and