The Animal Parasites of Man. Max Braun. Читать онлайн. Newlib. NEWLIB.NET

Автор: Max Braun
Издательство: Bookwire
Серия:
Жанр произведения: Медицина
Год издания: 0
isbn: 4057664648037
Скачать книгу
follicular abscesses arise and after their rupture follicular ulcers. The diseased patches in the mucosa are markedly hyperæmic and numerous hæmorrhages are set up. Roos and Harris state that the amœbæ also penetrate into the blood-vessels (fig. 7) and this explains the occurrence of metastatic abscesses.15 The whole submucosa is severely swollen at the diseased spot and undergoes small-celled infiltration in the neighbourhood of the colonies of amœbæ. From these findings Jürgens (1902) draws the conclusion16 which is followed here, that the amœbæ are causative agents of the enteritis of cats, which disease is well defined, both pathologically and anatomically. Subsequent researches confirm the experience of earlier authors; great precautions were taken to exclude errors, hence, as with Gross and Harris, no exception can be taken to their results. The inoculation material was derived from soldiers who suffered from amœbic enteritis in China and who were admitted into the garrison hospital at Berlin. In order to be independent of the patients themselves, transmission experiments from cat to cat were performed, after the first experiments on cats yielded positive results. This was also effected by rectal feeding as employed by earlier workers. Such appeared necessary in order to prevent the evacuation of the inoculation material per anum, as well as to avoid the employment of morphia and ether narcosis. Forty-six cats were used for the experiments. Ten cats received tested stools containing motile amœbæ from soldiers suffering from amœbic enteritis contracted in China. Sixteen other cats received stools from cats infected by inoculation. All the animals sickened and suffered from the disease. Five cats received dejecta from human amœbic enteritis in which, however, no motile amœbæ were present. Thirteen cats received stools from soldiers who suffered from bacillary dysentery. None of the latter cats took the complaint and none showed changes in the large intestine upon sectioning. The injection of various bacteria, obtained from a stool of amœbic enteritis pathogenic to cats, remained without result in both the cats employed for this experiment. Lastly, two cats, which had been kept with those artificially infected, were taken ill spontaneously and suffered from the disease. In the opinion of Harris, who ascertained the harmless nature of bacteria derived from the intestinal flora containing dysenteric amœbæ, young dogs are capable of being infected.

      Within the large intestine an active increase of Entamœba histolytica must occur. Nevertheless, Jürgens did not definitely find changes that might be interpreted in this sense. Schaudinn (1903) observed division and gemmation in vivo. Both processes, in which the nucleus divides by amitosis, can only be distinguished by the fact that the daughter individuals are similar in binary fission but dissimilar in gemmation, whether they make their appearance singly or in greater numbers. Schizogony, resulting in the formation of eight individuals, which is so characteristic for Entamœba coli, was not observed. (But schizogony, into four merozoites, is now known to occur. Gemmation processes are apparently degenerative.)

      E. histolytica also is found in the large intestine. This was originally shown to be the case by Kartulis, and the fact has recently been confirmed from many quarters. It is also present in the metastatic abscesses of which it is the cause (cf. among other authors, Rogers, Brit. Med. Journ., 1902, ii, No. 2,177, p. 844; and 1903, i, No. 2,214, p. 1315).

      It should lastly be pointed out in this connection that mixed infections also take place. For instance, in addition to E. histolytica, E. coli, and, under certain circumstances, flagellates may be found together. In the same way E. coli may come under observation even in bacillary dysentery. On the other hand, Schaudinn stated that in cases of dysentery endemic in Istria, Entamœba coli, if it had hitherto been present, disappeared, to return again after recovery from the illness.

      Fig. 8.—Entamœba histolytica. a, trophozoite (tetragena type) containing red blood corpuscles, × 1,300; b and c, two isolated nuclei showing different appearances of karyosome, centriole and nuclear membrane, × 2,600. (After Hartmann.)

      (Entamœba tetragena, Viereck, 1907.)

      This amœba must now be considered to be a part of the lifecycle of Entamœba histolytica, in fact a very important part of that cycle, especially in its tetranucleate cystic stages.

      This organism, the so-called Entamœba tetragena, may occur in the human intestine in cases of amœbic dysentery, especially in mild or chronic cases. It was discovered by Viereck in 1907 in patients suffering from dysentery contracted in Africa. Soon afterwards an independent description was published by Hartmann, who called the amœba E. africana. It was also studied by Bensen and Werner. Recently (1912–13) much work has been published on this amœba by Darling and others; in this way its relationship to Schaudinn’s E. histolytica has been made known.

      Fig. 9.—Entamœba histolytica (tetragena form). a, emission of chromatin from nucleus; b, nuclear division; c, degenerating form with two nuclei; d, e, f, cysts containing one, two and four nuclei respectively, and showing chromidial blocks. × 2,000. (After Hartmann.)

      Some investigators, as Hartmann,19 lay stress on the internal structure of the nucleus (fig. 8, b, c), best seen in preparations fixed wet and stained with iron-hæmatoxylin. The nucleus is limited by a well-marked nuclear membrane, on the inside of which granules or nodules of chromatin may occur. There is a karyosome, which, in successfully stained specimens, shows, at times, a central dot called a centriole. (The nucleus of Entamœba