Чтобы оправдать все предыдущее, мне остается показать, что известные изменения, происходящие в положении внешних предметов, могут быть компенсированы коррелятивными движениями чувствующих существ, которые заселяют этот воображаемый мир; таким образом, может быть восстановлен первоначальный комплекс впечатлений, испытываемых этими существами.
Предположим в самом деле, что предмет перемещается, деформируясь: не как неизменное твердое тело, но как твердое тело, испытывающее неравномерные расширения, в точности соответствующие допущенному выше закону изменения температур. Для краткости я позволю себе называть подобное движение неевклидовым перемещением.
Если по соседству находится чувствующее существо, его впечатления будут изменены благодаря перемещению предмета, но оно будет в состоянии восстановить их в прежнем виде, передвигаясь само надлежащим образом. Достаточно, чтобы в результате система, состоящая из предмета и чувствующего существа, рассматриваемая как одно тело, испытывала одно из тех особых перемещений, которые я назвал неевклидовыми. Это возможно, если допустить, что члены этих существ расширяются по тому же закону, что и другие тела заселяемого ими мира.
Хотя с точки зрения нашей обычной геометрии тела окажутся после такого перемещения деформированными и различные их части отнюдь не возвратятся в прежнее относительное расположение, но мы увидим, что впечатления чувствующего существа окажутся теми же.
В самом деле, если взаимные расстояния различных частей и могли измениться, тем не менее части, бывшие вначале в соприкосновении, опять будут в соприкосновении. Следовательно, осязательные впечатления не изменятся. С другой стороны, если учесть гипотезу о преломлении и кривизне световых лучей, мы убедимся, что и зрительные впечатления останутся прежними.
Итак, наши воображаемые существа должны будут, как и мы, классифицировать наблюдаемые ими явления и выделить из них «изменения положения», которые можно компенсировать соответственным волевым движением.
Если они создадут геометрию, то она не будет, подобно нашей, изучением движений наших неизменных твердых тел; это будет наука об изменениях положения, изменениях, которые они выделят в особую группу и которые будут представлять не что иное, как «неевклидовы перемещения». Это будет неевклидова геометрия.
Таким образом, такие же существа, как мы, воспитание которых происходило бы в подобном мире, имели бы геометрию, отличную от нашей.
Мир четырех измерений. Так же, как неевклидов мир, можно представить себе мир четырех измерений.
Чувство зрения, даже при единственном глазе, в соединении с мускульными ощущениями, сопровождающими движения глазного яблока, могло бы оказаться достаточным для познания пространства трех измерений.
Образы внешних предметов рисуются на сетчатке, которая является картиной двух измерений; это – перспективные