Системы ИИ добились впечатляющих результатов в конечных конкурентных играх: от шахмат до игры в го. В 2017 г. ИИ впервые победил человека в игре, где наряду с комбинаторикой требовалась рефлексия позиции, а именно – в покере. Методы ИИ в последние годы обеспечили прорыв в переводе. Другие направления задач, где осуществляется быстрый прогресс, включают в себя распознавание речи, автомобильную навигацию и прогнозирование биржевых процессов.
Успехи ИИ связаны с тремя основными факторами. Во-первых, с использованием новой высокопроизводительной элементной базы. Во-вторых, с применением новых программных решений, базирующихся на сложной комбинаторике и машинном обучении. В-третьих, с широким использованием робототехники как периферийных устройств ИИ, аналогичным периферийным устройствам человека, типа рук, ног, по отношению к мозгу.
Хотя в последние 10 лет ИИ развивался экспоненциально, вряд ли следует ожидать таких же темпов прогресса и в перспективе. Как правило, технические нововведения развиваются по гиперциклу Гартнера. При гиперцикле после долгого периода созревания наступает этап экспоненциальных перемен. В результате система достигает уровня зрелости и определенное время оказывается как бы на плато, раздвигаясь вширь, а не развиваясь вглубь. Затем наступает спад, связанный с насыщением данной технологией наиболее продвинутых пользователей. Однако спад является недолговременным и сменяется умеренным ростом, который характерен для любой зрелой технологии. Вряд ли есть основания полагать, что ИИ не будет развиваться в рамках гиперцикла. Сегодня центральной задачей ИИ является создание эффективных гибридных систем, где ИИ взаимодействует с человеком.
§ 2. ИИ, распознание угроз и оценка рисков
Магистральным направлением использования ИИ являются вопросы безопасности. При решении этой группы вопросов как в никакой другой сфере важно заблаговременно распознавать угрозы и оценивать риски. Распознавание угрозы мало чем отличается от распознавания лица. Любая угроза имеет определенный устойчивый паттерн, который может быть выражен через набор числовых характеристик. Поскольку вопросы распознавания в решающей степени зависят от скорости и полноты вычислений, то ИИ как комбинаторная машина, позволяет распознавать угрозы намного быстрее и точнее,