Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…. Никита Сергеев. Читать онлайн. Newlib. NEWLIB.NET

Автор: Никита Сергеев
Издательство: Издательские решения
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 0
isbn: 9785005007346
Скачать книгу
сложные методы, которые позволяют рассчитать взаимосвязи между переменными, а также понять, являются ли эти взаимосвязи просто случайными совпадениями или реальными закономерностями.

      Анализ данных является ключевым этапом, в ходе которого происходит непосредственная проверка соответствия собранной информации нашим моделям явлений, процессов или объектов.

      И более того: в ходе анализа формулируются и проверяются / уточняются существующие или рождаются новые модели, отражающие те закономерности, которые мы нашли в собранных данных.

      Исследователь, ученый, менеджер или работник выдвигает определенную модель явления / процесса / объекта, демонстрирует соответствие (либо противоречие) данных и содержащихся в них закономерностей этой модели – и только потом может опираться на модель, отвлекаясь уже от самих данных. Нам, к примеру, уже не нужно постоянно опираться на данные, чтобы понимать, что Земля вращается вокруг Солнца.

      Именно статистический анализ позволяет нам находить скрытые закономерности, которые дают нам больше понимания о реальности и уточняют как она работает.

      Но, прежде чем искать закономерности, надо рассмотреть несколько важных вещей из области статистики – и мы их далее рассмотрим в рамках этого раздела.

      Выборка и генеральная совокупность

      Реальность обычно представлена невероятно большим количеством случаев / наблюдений / объектов. Людей, жителей, клиентов, компаний, растений или животных и т. д. И вся их популяция представляет собой генеральную совокупность.

      Например, если объектом нашего интереса (за кем мы желаем понаблюдать и изучить) являются жители конкретного города, то все они и есть наша генеральная совокупность. Но если объектом интереса были бы, к примеру, только люди трудоспособного возраста (или имеющие право голоса на выборах) в этом городе, то наша генеральная совокупность уменьшилась бы.

      При решении отдельных задач вполне легко можно исследовать всю генеральную совокупность.

      Например, у Вас есть текущая база подписчиков он-лайн журнала – и необходимо предсказать кто из них с высокой долей вероятности не продлит подписку со следующего года.

      Для этого у Вас, по сути, есть доступ к базе данных по всей генеральной совокупности – и Вы можете сделать аналитику, используя данные всей базы. Посмотреть, люди с каким профилем демографии, поведения, предпочитаемых рубрик чтения и т. д. не продлевали подписку в прошлом и, наложив обнаруженные закономерности на существующую базу, получить условно доверительный прогноз кто не продлит ее сейчас.

      Также с генеральной совокупностью могут иметь дело специалисты кадровых служб, проводящие анализ сотрудников предприятия.

      Другое дело, когда Вы решите изучить всех потенциальных клиентов, рынок кандидатов на вакансии или избирателей. Вот тут Вы столкнетесь с тем, что всех их изучить невозможно и дорого. Поэтому Вы будете исследовать только некоторых, а полученные результаты распространять на всю генеральную совокупность.

      Вот