Congruentia, Congruency, Agreeablenesse is of two magnitudes, when the first parts of the one doe agree to the first parts of the other, the meane to the meane, the extreames or ends to the ends, and lastly the parts of the one, in all respects to the parts, of the other: so Lines are congruall or agreeable, when the bounding, points of the one, applyed to the bounding points of the other, and the whole lengths to the whole lengthes, doe occupie or fill the same place. So Surfaces doe agree, when the bounding lines, with the bounding lines: And the plots bounded, with the plots bounded doe occupie the same place. Now bodies if they do agree, they do seeme only to agree by their surfaces. And by this kind of congruency do we measure the bodies of all both liquid and dry things, to witt, by filling an equall place. Thus also doe the moniers judge the monies and coines to be equall, by the equall weight of the plates in filling up of an equall place. But here note, that there is nothing that is onely a line, or a surface onely, that is naturall and sensible to the touch, but whatsoever is naturall, and thus to be discerned is corporeall.
Therefore
11. Congruall or agreeable Magnitudes are equall. 8. ax. j.
A lesser right line may agree to a part of a greater, but to so much of it, it is equall, with how much it doth agree: Neither is that axiome reciprocall or to be converted: For neither in deede are Congruity and Equality reciprocall or convertible. For a Triangle may bee equall to a Parallelogramme, yet it cannot in all points agree to it: And so to a Circle there is sometimes sought an equall quadrate, although incongruall or not agreeing with it: Because those things which are of the like kinde doe onely agree.
12. Magnitudes are described betweene themselves, one with another, when the bounds of the one are bounded within the boundes of the other: That which is within, is called the inscript: and that which is without, the Circumscript.
Now followeth Adscription, whose kindes are Inscription and Circumscription; That is when one figure is written or made within another: This when it is written or made about another figure.
Homogenea, Homogenealls or figures of the same kinde onely betweene themselves rectitermina, or right bounded, are properly adscribed betweene themselves, and with a round. Notwithstanding, at the 15. booke of Euclides Elements Heterogenea, Heterogenealls or figures of divers kindes are also adscribed, to witt the five ordinate plaine bodies betweene themselves: And a right line is inscribed within a periphery and a triangle.
But the use of adscription of a rectilineall and circle, shall hereafter manifest singular and notable mysteries by the reason and meanes of adscripts; which adscription shall be the key whereby a way is opened unto that most excellent doctrine taught by the subtenses or inscripts of a circle as Ptolomey speakes, or Sines, as the latter writers call them.
The second Booke of Geometry. Of a Line
1. A Magnitude is either a Line or a Lineate.
The Common affections of a magnitude are hitherto declared: The Species or kindes doe follow: for other then this division our authour could not then meete withall.
2. A Line is a Magnitude onely long.
As are ae. io. and uy. such a like Magnitude is conceived in the measuring of waies, or distance of one place from another: And by the difference of a lightsome place from a darke: Euclide at the 2 d j. defineth a line to be a length void of breadth: And indeede length is the proper difference of a line, as breadth is of a face, and solidity of a body.
3. The bound of a line is a point.
Euclide at the 3. d j. saith that the extremities or ends of a line are points. Now seeing that a Periphery or an hoope line hath neither beginning nor ending, it seemeth not to bee bounded with points: But when it is described or made it beginneth at a point, and it endeth at a pointe. Wherefore a Point is the bound of a line, sometime actu, in deed, as in a right line: sometime potentiâ, in a possibility, as in a perfect periphery. Yea in very deede, as before was taught in the definition of continuum, 4 e. all lines, whether they bee right lines, or crooked, are contained or continued with points. But a line is made by the motion of a point. For every magnitude generally is made by a geometricall motion, as was even now taught, and it shall afterward by the severall kindes appeare, how by one motion whole figures are made: How by a conversion, a Circle, Spheare, Cone, and Cylinder: How by multiplication of the base and heighth, rightangled parallelogrammes are made.
4. A Line is either Right or Crooked.
This division is taken out of the 4 d j. of Euclide, where rectitude or straightnes is attributed to a line, as if from it both surfaces and bodies were to have it. And even so the rectitude of a solid figure, here-after shall be understood by a right line perpendicular from the toppe unto the center of the base. Wherefore rectitude is propper unto a line: And therefore also obliquity or crookednesse, from whence a surface is judged to be right or oblique, and a body right or oblique.
5. A right line is that which lyeth equally betweene his owne bounds: A crooked line lieth contrariwise. 4. d. j.
Now a line lyeth equally betweene his owne bounds, when it is not here lower, nor there higher: But is equall to the space comprehended betweene the two bounds or ends: As here ae. is, so hee that maketh rectum iter, a journey in a straight line, commonly he is said to treade so much ground, as he needes must, and no more: He goeth obliquum iter, a crooked way, which goeth more then he needeth, as Proclus saith.
6. A right line is the shortest betweene the same bounds.
Linea recta, a straight or right line is that, as Plato defineth it, whose middle points do hinder us from seeing both the extremes at once; As in the eclipse of the Sunne, if a right line should be drawne from the Sunne, by the Moone, unto our eye, the body of the Moone beeing in the midst, would hinder our sight, and would take away the sight of the Sunne from us: which is taken from the Opticks, in which we are taught, that we see by straight beames or rayes. Therfore to lye equally betweene the boundes, that is by an equall distance: to bee the shortest betweene the same bounds; And that the middest doth hinder the sight of the extremes, is all one.
7. A crooked line is touch'd of a right or crooked line, when they both doe so meete, that being continued or drawne out farther they doe not cut one another.
Tactus, Touching is propper to a crooked line, compared either with a right line or crooked, as is manifest out of the 2. and 3. d 3. A right line is said to touch a circle, which touching the circle and drawne out farther, doth not cut the circle, 2 d 3. as here ae, the right line toucheth the periphery iou. And ae. doth touch the helix or spirall. Circles are said to touch one another, when touching they doe not cutte one another, 3. d 3. as here the periphery doth aej. doth touch the periphery ouy.
Therefore
8. Touching is but in one point onely. è 13. p 3.
This Consectary is immediatly conceived out of the definition; for otherwise it were a cutting, not touching. So Aristotle in his Mechanickes saith; That a round is easiliest mou'd and most swift; Because it is least touch't of the plaine underneath it.
9. A crooked line is either a Periphery or an Helix. This also is such a division, as our Authour could then hitte on.
10. A Periphery is a crooked line, which is equally distant from the middest of the space comprehended.
Peripheria, a Periphery, or Circumference, as eio. doth stand equally distant from a, the middest of the space enclosed or