Глава 4
Новая машина: Интеллектуальные системы
Возможно, иногда вас удивляет то же, что и нас: «Как Uber всегда удается находить машину, если я в каком-то случайном закоулке в пятистах милях от дома, а затем автоматически списывать деньги с карты, высылать счет и отмечать мой пассажирский рейтинг – и все за секунды?» или «Как я могу смотреть видео на YouTube на мобильном устройстве, двигаясь в поезде со скоростью 130 миль в час?».
Две этих ситуации, два момента «чуда», которые уже стали обыденными, еще несколько лет назад были бы невозможны. Удивительно то, что и Uber, и YouTube, несмотря на то что предлагают совсем не похожие услуги, выполняют свои операции на «машинах» с практически одинаковыми компонентами. Эта новая машина, та, что мы зовем «интеллектуальной системой», быстро становится краеугольным камнем для компаний, конкурирующих в наукоемкой среде. Она в центре Facebook, Instagram, Google, Е-Trade, Betterment и всех прочих сегодняшних цифровых лидеров.
Однако при всей значимости новые машины по-прежнему остаются во многом непонятыми. Многие из нас активно потребляют результаты действия интеллектуальных систем, не останавливаясь, чтобы задуматься, насколько актуальные, персонализированные и отборные возможности создаются и достаются нам.
В связи с этим в данной главе мы объясним, чем являются эти новые машины – каковы компоненты технологии, как сочетаются, на что похож хороший образец и каким образом они глубоко повлияют на будущее вашей работы.
Мы знаем, обзор может оказаться похожим на то, как вы учились водить, будучи подростком, и ваш дядя, откинув капот машины, объяснял, как все это работает. Некоторые уроки могут быть скучноватыми (например, «это карбюратор, это свечи зажигания»), но сейчас, пользуясь интеллектуальными системами на непрерывной основе, мы должны создавать и применять их в своих компаниях, чтобы добиться конкурентного преимущества, поэтому рабочие знания здесь очень важны.
Дать определение новой машине
Давайте начнем с простого определения, а затем немного его распространим.
Интеллектуальная система совмещает в себе программное обеспечение (алгоритмы, деловой регламент, код машинного обучения, прогнозовая аналитика), комплектующее оборудование (серверы, датчики, мобильные устройства, возможность подключения), данные (контекстуализированные и в реальном времени) и человеческое участие (часто оценка или запросы).
Может прозвучать как «куча оборудования, ПО и данных соединить вместе – и там произойдет чудо». Так что давайте вкратце пройдемся по трем ключевым атрибутам, делающим интеллектуальную систему такой особенной.
• Программное обеспечение, которое учится. Программное обеспечение, составляющее центр новой машины, – это то, чего мы не видели никогда прежде. Впервые в истории человечества у нас есть инструмент, который может делать сам себя. ПО, способное к машинному обучению, со временем