• Опыт (Experience) – Инсайты должны приходит через эксперименты, исследования, тестирование своих клиентов или поиск закономерности в их поведении. Этим необходимо постоянно заниматься.
Data-driven организация – это не пункт назначения, а процесс или путь по которому идет организация, поэтому необходимо поддерживать его соответствующими артефактами и адекватными процессами. Этот процесс позволяет пользователям и сотрудникам применять тот или иной фреймворк работы с данными. Он не должен быть сложным и запутанным, а, скорее, должен отражать, кто и на каком конкретном шаге участвует в создании ценности с использованием данных.
Завершает Авинаш Кошик свой уникальный фреймворк одним из ключевых тезисов, без которого невозможно движение к data-driven организации, а именно: ответственным за данные, аналитику и поиск инсайтов в организации должно быть обособленное бизнес-подразделение (не IT).
В чем ценность data-driven организации
В 2011 году профессор MIT Эрик Брайнджолсфон провел любопытное исследование.[16] Он проанализировал данные 330 различных компаний за пятилетний цикл, в рамках которого выявил взаимосвязь между производительностью труда, выручкой и культурой организации, где было видно, как data-driven культура влияла на результативности той или иной компании.
Согласно исследованию, DD процесс повышал результативность труда и выручку компании на шесть процентов. По данным исследовательской компании Nucleous Research за 2014 год, было выявлено, что за каждый вложенный доллар в решения и процессы по аналитике и работе с данными, компания получала в среднем 13,01 долларов.
Data-informed организации
Продолжаем главы для продвинутых. Пытаясь разобрать дальнейший текст, я прошу, не сильно налегайте на алкоголь. Мне очень хочется, чтобы вы это прочитали.
Итак, существование так называемых дата-центрированных организаций имеет свое обоснование. Понятно, каким образом их строить и зачем. Но есть ли здесь какой-то подвох?
В 2010 году Адам Моссери, VP по продукту новостной ленты в Facebook, высказал мысль о том, как важно не допускать полной централизации организации в отношении данных. Основная идея его выступления сводилась заключалась в том, что данные дают возможность проанализировать текущую ситуацию и выбрать и наиболее оптимальный путь.
Но, если говорить о возможности создания уникального или лучшего продукта, то в дополнение к подходу, сформулированному Адамом Моссери, известный блогер и писатель в области Digital, Эндрю Чен, сформулировал тезис наличия «локального максимума[17]» в дата-центрированном процессе или продукте. Что это означает?
Локальный максимум представляет точку, которую можно легко выявить с помощью данных, и она помогает инкрементально (небольшими шагами) оптимизировать выбранный процесс или продукт.