Рис. 8.
Вектор на следующем рисунке указывает предполагаемое направление равномерного движения в случае, если бы все внешние силы исчезли. Это так называемое тангенциальное или касательное направление. Если смотреть на движущуюся частицу через микроскоп, то можно увидеть очень небольшую часть ее пути, представляющуюся в виде небольшого, едва искривленного отрезка. Касательная линия является его продолжением. Нарисованный таким образом вектор представляет скорость в данный момент. Вектор скорости лежит на касательной линии. Его длина представляет собой численную величину скорости или ту скорость, которая указывается, например, спидометром автомашины.
Рис. 9.
Наш идеализированный эксперимент, в котором уничтожены силы для того, чтобы найти вектор скорости, нельзя принимать слишком серьезно. Он только помогает нам понять, что мы должны называть вектором скорости при криволинейном движении, и позволяет нам определить его для данного момента в данной точке.
На рисунке 10 показаны векторы скорости для трех различных положений частицы, движущейся вдоль кривой. В этом случае во время движения меняются не только направления, но и величины скорости, как показывает длина векторов.
Рис. 10.
Удовлетворяет ли это новое понятие скорости требованию, сформулированному для всех обобщений? Иначе говоря, сводится ли оно к прежнему понятию скорости, если кривая становится прямой? Очевидно, да. Касательная к прямой есть сама прямая. Вектор скорости лежит на линии движения, так же как это было в случае движущейся тележки или катящегося шара.
Рис. 11.
Следующий шаг – это введение изменения скорости частицы, движущейся вдоль кривой. Оно также может быть выполнено различными путями, из которых мы выберем самый простой и удобный. Последний рисунок показывал несколько векторов скоростей, представляющих движение вдоль кривой в разных точках. Первые два из них можно опять нарисовать так, чтобы они имели общую исходную точку (рис. 11), что, как мы видели, возможно проделывать с векторами. Пунктирный вектор мы называем изменением скорости. Его начальная точка представляет собой конец первого вектора, а конечная точка – конец второго вектора. Этим и определено изменение скорости. Такое определение может на первый взгляд показаться искусственным и бессмысленным. Оно становится гораздо яснее в особом случае, в котором векторы 1 и 2 имеют одинаковое направление (рис. 12). Конечно, это означает переход к случаю прямолинейного движения. Если оба вектора имеют