. . Читать онлайн. Newlib. NEWLIB.NET

Автор:
Издательство:
Серия:
Жанр произведения:
Год издания:
isbn:
Скачать книгу
стакана, где лежало три вишни и четыре виноградинки. Дети смотрели на её ловкие руки, которые сортировали ягоды, и переводили глаза на карточки с таблицей Менделеева, где в каждой клетке, соответствующей отдельному химическому элементу, указывалось размещение электронов по разным орбитам вокруг ядра данного элемента.

      – На втором уровне могут уместиться восемь электронов. Поэтому следующие за литием семь атомов размещают свои электроны именно на этом, втором уровне: бериллий, бор, углерод, азот, кислород, фтор, неон. Последние три элемента особенно интересны: кислороду для заполнения второго уровня не хватает двух электронов, фтору – одного, а неон полностью заполнил второй уровень электронами. Эти особенности строения электронных оболочек определяют химические свойства данных элементов: кислород и фтор стремятся отобрать недостающие им электроны у любых встреченных ими атомов, заодно присоединить и сами эти атомы, «окислить» их, образовав молекулу «оксида» с одним атомом кислорода или «диоксида» – с двумя. Кислород – это самый распространённый окислитель, поэтому процесс окисления даже назвали по его имени.

      – Может, это его назвали по процессу окисления? – предположила Галатея. – А нельзя ли привести какой-нибудь пример этого… окисления?

      Дзинтара ответила:

      – Конечно. Окисление железа, или образование ржавчины, является самым типичным примером соединения кислорода с металлом. Следующий элемент таблицы Менделеева, фтор, является самым сильным окислителем в природе, который может окислить все химические элементы, включая золото и платину. Исключением являются гелий и неон – инертность этих газов не может преодолеть даже агрессивный фтор.

      Углерод имеет на втором электронном уровне четыре электрона, то есть можно с одинаковым основанием сказать, что его второй уровень наполовину пуст или наполовину полон. Эта особенность углерода позволяет ему создавать самые различные химические соединения, например отдавая сильному окислителю все четыре электрона – как в случае углекислого газа CO2, или отнимая у четырёх атомов водорода по электрону, образуя метан CH4. Это обилие химических соединений углерода сделало его основой жизни на нашей планете.

      – А на других планетах? – полюбопытствовала Галатея.

      – Вероятнее всего – и на других планетах, хотя некоторые фантасты рассуждают о возможности жизни не на основе углерода, а на основе других химических элементов. Но вряд ли такие формы жизни возможны.

      – А почему так важно подсчитывать электроны на разных оболочках? – спросила Галатея.

      – Давайте посмотрим на трёх соседей по таблице Менделеева – углерод, азот и кислород: массы их ядер очень близки, а их электрические заряды, то есть число протонов, отличаются всего на единицу. Но за счет другого расположения электронов мы получили совершенно разные по химическим свойствам элементы: углерод, который представляет собой твердое тело, и два газа с очень различными свойствами: