Укрощение бесконечности. История математики от первых чисел до теории хаоса. Иэн Стюарт. Читать онлайн. Newlib. NEWLIB.NET

Автор: Иэн Стюарт
Издательство: Манн, Иванов и Фербер (МИФ)
Серия:
Жанр произведения: Математика
Год издания: 2008
isbn: 978-5-00117-455-4
Скачать книгу
можно представить как два отрезка, один длиной в две единицы и другой в три (соотношение 2:3). √2 можно представить парой, составленной диагональю единичного квадрата и его стороной (и это будет соотношение √2:1). Обратите внимание: здесь оба отрезка могут быть построены геометрически.

      Здесь главный секрет – определить, когда эти два соотношения будут равны. Когда a: b = c: d? Греки не имели такой системы счисления, которая позволила бы им сделать это простым делением длины одного отрезка на длину другого, и вынуждены были сравнивать a: b с c: d. А Евдокс предложил громоздкий, но точный способ сравнения, укладывающийся в условности греческой геометрии. Идея была в том, чтобы сравнивать целочисленные произведения ma и nc. Этого можно было достичь, соединяя m копий а непрерывной цепью и точно так же n копий b, а затем использовать те же множители m и n для сравнения mb и nd. Евдокс рассуждал: если соотношения a: b и c: d не равны, мы можем подобрать m и n так, чтобы увеличить разницу до такой степени, что ma > nc, но mb < nd. Действительно, так мы можем установить равенство соотношений.

      Равны ли соотношения a: b и c: d?

      Такое определение требует специальных навыков, зато прекрасно вписывается в ограниченные возможности греческой геометрии. Так или иначе, оно работает; более того, оно позволило греческим геометрам взять теоремы, легко доказуемые с помощью рациональных отношений, чтобы расширить их действие до иррациональных.

      Часто они использовали так называемый метод исчерпывания (или, иначе, истощения), в котором некоторые видят предка современного метода пределов и интегрального исчисления. Этим методом они доказали, что площадь круга пропорциональна квадрату его радиуса. Доказательство основывалось на простом факте, открытом Евклидом: площади двух подобных многоугольников соотносятся в той же пропорции, что и квадраты их соответствующих сторон. Круг представлял проблему: он не был многоугольником. Тогда греки построили две последовательности многоугольников: одну помещавшуюся внутри круга, а вторую – снаружи. Каждый следующий многоугольник всё ближе подходит к кругу, и из метода исчерпывания, доведенного до совершенства Евдоксом, следует, что площади самых близких к кругу многоугольников стремятся к его площади и в итоге совпадут с ней.

      Евклид

      Самым известным греческим геометром, хотя, возможно, и не самым талантливым математиком, считается Евклид Александрийский. Он внес огромный вклад в историю науки, собрав труды предшественников и сведя их воедино, и его «Начала» – шедевр всех времен и народов. Евклид создал не меньше десяти трудов по математике, из которых до нас дошло только пять, и те в поздних копиях, в виде фрагментов. До наших дней не дожил ни один подлинный документ из Древней Греции. Пять имеющихся текстов Евклида называются «Начала», «О делении», «Данные», «Явления» и «Оптика».

      «Начала» считаются основным трудом Евклида, который окончательно утвердил разделение