Meanwhile there was open warfare going on between two of NASA’s centers, Houston and Marshall, over their preferred Mars modes.
It was just what NASA didn’t need right now, and all the old hands at NASA had been here before, too many times. Dana knew that Seger had already been trying to get around the conflict by encouraging informal contacts and discussions, and by having the Houston people help with the devising of Marshall’s presentation, and so forth. And it was obvious that Seger’s intention today was to lance that boil before sending the recommendations further up the chain of command.
Now Seger flashed up a draft agenda. The meeting was going to run for the whole day. The two major modes – chemical and nuclear – would be presented first, followed by the other studies …
Dana found with dismay that his would be the last of the five major presentations. I’m coming at the nutty end, he realized. Even after the guys from General Dynamics with their ludicrous atomic-bomb motor. I’m being wheeled on as light relief. In the midst of this organizational in-fighting, he was going to be squeezed out; he had probably upset too many people by circumventing the hierarchy. He felt his stomach knot up with frustration and anxiety. Damn it, I know I’m right, that I have the way we should be going to Mars, right here in this folder. He pushed his spectacles up onto his nose, agitated.
First up was the nuclear rocket option.
Dana thought the timing was significant; this option, heavily pushed by Marshall, was, he had heard, the preferred option amongst the NASA brass.
The presentation was opened by a hairy young man called Mike Conlig. Conlig reported into Marshall now, but he had worked for several years at the nuclear rocket development station in Nevada. ‘We’ve achieved twenty-eight starts of our XE-Prime liquid hydrogen prototype, running up in excess of fifty-five thousand pounds of thrust.’ Conlig showed a photograph of an ungainly test rig, framed by dismal mountains. ‘Next we will proceed to the development of NERVA 1, which will develop seventy-five thousand pounds of thrust. Then the full NERVA 2 module will be developed, to support the Mars mission itself. NERVA 2 will be flight tested in the mid 1970s, in fact launched into orbit as a new Saturn V third stage …’
Conlig spoke well and enthusiastically; Dana let the data rattle through his head.
Now a slim, cold-looking man, his blond hair speckled with gray, walked to the stage. ‘To achieve the necessary performance for interplanetary travel, we have evolved a “building block” technology, in which separate NERVA propulsion modules will be launched into Earth orbit, and clustered to achieve different requirements …’ The voice was shallow, a little clipped – overlaid by a disconcerting Alabama drawl, after all these years at Huntsville – but still underpinned by sharp Teutonic consonants.
This was Hans Udet: Udet, who had worked at Peenemunde with von Braun, and now one of von Braun’s senior people at Marshall.
Dana showed no reaction.
Dana had dealt with the Huntsville Germans many times, over his years at NASA. And even now he recognized many faces from those ancient days in the Harz Mountains, here in the halls and offices of NASA.
But he had never been recognized, in his turn – why should he be? – and he had never volunteered his identity. He had mentioned this antique link to no one. The Mittelwerk was buried deep in the past, and they had all moved on to new concerns.
He’d never even discussed that part of his past with Jim.
But he had never lost his sense of inferiority, before these confident, clever Germans.
Udet put up foils showing two identical ships, to be assembled in Earth orbit. There would be four or six crew in each ship. The ships would be boosted out of orbit by disposable NERVA modules, and then docked nose-to-nose for the flight to Mars. Udet flashed up summaries of mission weights, flight durations, development costs and other key parameters. ‘Our baseline study,’ Udet said, ‘will allow us to launch to Mars in November 1981 …’
It was a huge, grandiose scenario. Typical von Braun, Dana thought: unimaginative, brute force, over-engineered.
Bert Seger opened the presentation up for questions. The hostile Houston contingent put in a lot of detailed probing about the untried nuclear technology: the difficulties of clustering the nuclear modules, progress on the advanced cooling techniques needed. There were also questions about the significance of the treaties banning atmospheric testing of nuclear technology; it seemed to Dana that these issues were still unresolved.
Seger let the questions run on for some time – well over the option’s allotted slot – and then orchestrated a round of applause. All this reinforced Dana’s view that this was the mode preferred within NASA, unofficially, and Seger had a brief to make sure that it was fully understood and accepted.
The second major presentation was of an all-chemical-engine mode. It was prepared by Rockwell, and championed by Houston staff. Rockwell were, incidentally, the favorites to be selected as lead contractor for the Space Shuttle.
The mission profile, Dana soon saw, was close to the classic minimum-energy Hohmann transfer profile he’d sketched out to Jim, that day in the shop at the back of his house in Hampton.
The chemical mode had some advantages. The development program would be comparatively cheap, since the hardware would be based on incremental upgrades of Saturn technology, for example the use of an enhanced Saturn second stage to serve as an orbital injection booster.
But the nuclear camp from Marshall, led by Udet and Conlig, didn’t find it hard to pick holes in the case. Compared to the NERVA profile, twice as much mass would have to be hurled into Earth orbit, for a mission twice the length. Chemical technology couldn’t manage much better than that. Not without imagination, anyway, Dana thought; not if you stick to direct transfer …
Dana knew that most of the points raised in the discussion were a repeat of the sterile arguments which had plagued NASA for some months.
At the end of the question session Seger didn’t call for any applause.
Lunch turned out to be steak and chicken served buffet style. The debate continued during the meal, with delegates making points by jabbing bits of steak or fried potato at each other.
Dana spotted the sleek, handsome figure of Wernher von Braun himself. He was talking to an astronaut: Joe Muldoon, a moonwalker, tall, erect, his thinning, gray-blond hair clipped to military neatness.
Few people spoke to the obscure little man from Langley with his peculiar presentation. Venus swingby modes? What the hell is that about? That suited Dana. He left the lunch early and returned to his seat in the hall; he didn’t much like steak anyway.
* * *
The conference looked at two more options, before Dana’s pitch. Both of these were more ambitious, technically, than either the main chemical or nuclear options reviewed earlier; Dana suspected they had been explored just to make sure nothing obvious was missed before the primary mode was selected.
A representative of McDonnell presented a so-called nuclear-electric option, together with representatives of NASA and ARPA, the Government’s Advanced Research Projects Agency. Plasma – a charged gas – would be accelerated electrodynamically out of a rocket nozzle. A plasma rocket’s thrust was tiny, but would last for months; plasma rockets would move spaceflight techniques away, at last, from the antique Jules Verne kick-and-coast model. The technology was unproven, but there had been some trials; an electric rocket had been operated at high altitude as long ago as 1964.
The McDonnell man flashed up a conceptual design for a manned nuclear-electric ship.