Pythagoras had discovered that simple numerical ratios were responsible for harmony in music. Scientists have cast some doubt on Iamblichus’ account of this story, but what is more certain is how Pythagoras applied his new theory of musical ratios to the lyre by examining the properties of a single string. Simply plucking the string generates a standard note or tone which is produced by the entire length of the vibrating string. By fixing the string at particular points along its length, it is possible to generate other vibrations and tones. Crucially, harmonious tones only occur at very specific points. For example, by fixing the string at a point exactly half-way along it, plucking generates a tone which is one octave higher and in harmony with the original tone. Similarly, by fixing the string at points which are exactly a third, a quarter or a fifth of the way along it, other harmonious notes are produced. However, by fixing the string at a point which is not a simple fraction along the length of the whole string, a tone is generated which is not in harmony with the other tones.
Pythagoras had uncovered for the first time the mathematical rule which governs a physical phenomenon and demonstrated that there was a fundamental relationship between mathematics and science. Ever since this discovery scientists have searched for the mathematical rules which appear to govern every single physical process and have found that numbers crop up in all manner of natural phenomena. For example, one particular number appears to guide the lengths of meandering rivers. Professor Hans-Henrik Stølum, an earth scientist at Cambridge University, has calculated the ratio between the actual length of rivers from source to mouth and their direct length as the crow flies. Although the ratio varies from river to river, the average value is slightly greater than 3, that is to say that the actual length is roughly three times greater than the direct distance. In fact the ratio is approximately 3.14, which is close to the value of the number π, the ratio between the circumference of a circle and its diameter.
The number π was originally derived from the geometry of circles and yet it reappears over and over again in a variety of scientific circumstances. In the case of the river ratio, the appearance of π is the result of a battle between order and chaos. Einstein was the first to suggest that rivers have a tendency towards an ever more loopy path because the slightest curve will lead to faster currents on the outer side, which will in turn result in more erosion and a sharper bend. The sharper the bend, the faster the currents on the outer edge, the more the erosion, the more the river will twist, and so on. However, there is a natural process which will curtail the chaos: increasing loopiness will result in rivers doubling back on themselves and effectively short-circuiting. The river will become straighter and the loop will be left to one side forming an ox-bow lake. The balance between these two opposing factors leads to an average ratio of π between the actual length and the direct distance between source and mouth. The ratio of π is most commonly found for rivers flowing across very gently sloping plains, such as those found in Brazil or the Siberian tundra.
Pythagoras realised that numbers were hidden in everything, from the harmonies of music to the orbits of planets, and this led him to proclaim that ‘Everything is Number’. By exploring the meaning of mathematics, Pythagoras was developing the language which would enable him and others to describe the nature of the universe. Henceforth each breakthrough in mathematics would give scientists the vocabulary they needed to better explain the phenomena around them. In fact developments in mathematics would inspire revolutions in science.
As well as discovering the law of gravity, Isaac Newton was a powerful mathematician. His greatest contribution to mathematics was his development of calculus, and in later years physicists would use the language of calculus to better describe the laws of gravity and to solve gravitational problems. Newton’s classical theory of gravity survived intact for centuries until it was superseded by Albert Einstein’s general theory of relativity, which developed a more detailed and alternative explanation of gravity. Einstein’s own ideas were only possible because of new mathematical concepts which provided him with a more sophisticated language for his more complex scientific ideas. Today the interpretation of gravity is once again being influenced by breakthroughs in mathematics. The very latest quantum theories of gravity are tied to the development of mathematical strings, a theory in which the geometrical and topological properties of tubes seem to best explain the forces of nature.
Of all the links between numbers and nature studied by the Brotherhood, the most important was the relationship which bears their founder’s name. Pythagoras’ theorem provides us with an equation which is true of all right-angled triangles and which therefore also defines the right angle itself. In turn, the right angle defines the perpendicular, i.e. the relation of the vertical to the horizontal, and ultimately the relation between the three dimensions of our familiar universe. Mathematics, via the right angle, defines the very structure of the space in which we live.
Figure 1. All right-angled triangles obey Pythagoras’ theorem.
It is a profound realisation and yet the mathematics required to grasp Pythagoras’s theorem is relatively simple. To understand it, simply begin by measuring the length of the two short sides of a right-angled triangle (x and y), and then square each one (x2, y2). Then add the two squared numbers (x2 + y2) to give you a final number. If you work out this number for the triangle shown in Figure 1, then the answer is 25.
You can now measure the longest side z, the so-called hypotenuse, and square this length. The remarkable result is that this number z2 is identical to the one you just calculated, i.e. 52 = 25. That is to say,
In a right-angled triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides.
Or in other words (or rather symbols):
This is clearly true for the triangle in Figure 1, but what is remarkable is that Pythagoras’ theorem is true for every right-angled triangle you can possibly imagine. It is a universal law of mathematics, and you can rely on it whenever you come across any triangle with a right angle. Conversely if you have a triangle which obeys Pythagoras’ theorem, then you can be absolutely confident that it is a right-angled triangle.
At this point it is important to note that, although this theorem will forever be associated with Pythagoras, it was actually used by the Chinese and the Babylonians one thousand years before. However, these cultures did not know that the theorem was true for every right-angled triangle. It was certainly true for the triangles they tested, but they had no way of showing that it was true for all the right-angled triangles which they had not tested. The reason for Pythagoras’ claim to the theorem is that it was he who first demonstrated its universal truth.
But how did Pythagoras know that his theorem is true for every right-angled triangle? He could not hope to test the infinite variety of right-angled triangles, and yet he could still be one hundred per cent sure of the theorem’s absolute truth. The reason for his confidence lies in the concept of mathematical proof. The search for a mathematical proof is the search for a knowledge which is more absolute than the knowledge accumulated by any other discipline. The desire for ultimate truth via the method of proof is what has driven mathematicians for the last two and a half