Fermat’s Last Theorem. Simon Singh. Читать онлайн. Newlib. NEWLIB.NET

Автор: Simon Singh
Издательство: HarperCollins
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 0
isbn: 9780007381999
Скачать книгу
argument by the power of logic. To his eternal shame he sentenced Hippasus to death by drowning.

      The father of logic and the mathematical method had resorted to force rather than admit he was wrong. Pythagoras’ denial of irrational numbers is his most disgraceful act and perhaps the greatest tragedy of Greek mathematics. It was only after his death that irrationals could be safely resurrected.

      Although Euclid clearly had an interest in the theory of numbers, it was not his greatest contribution to mathematics. Euclid’s true passion was geometry, and of the thirteen volumes that make up the Elements, books I to VI concentrate on plane (two-dimensional) geometry and books XI to XIII deal with solid (three-dimensional) geometry. It is such a complete body of knowledge that the contents of the Elements would form the geometry syllabus in schools and universities for the next two thousand years.

      The mathematician who compiled the equivalent text for number theory was Diophantus of Alexandria, the last champion of the Greek mathematical tradition. Although Diophantus’ achievements in number theory are well documented in his books, virtually nothing else is known about this formidable mathematician. His place of birth is unknown and his arrival in Alexandria could have been any time within a five-century window. In his writings Diophantus quotes Hypsicles and therefore he must have lived after 150 BC; on the other hand his own work is quoted by Theon of Alexandria and therefore he must have lived before AD 364. A date around AD 250 is generally accepted as being a sensible estimate. Appropriately for a problem-solver, the one detail of Diophantus’ life that has survived is in the form of a riddle said to have been carved on his tomb:

      

      God granted him to be a boy for the sixth part of his life, and adding a twelfth part to this, He clothed his cheeks with down; He lit him the light of wedlock after a seventh part, and five years after his marriage He granted him a son. Alas! late-born wretched child; after attaining the measure of half his father’s full life, chill Fate took him. After consoling his grief by this science of numbers for four years he ended his life.

      

      The challenge is to calculate Diophantus’ life span. The answer can be found in Appendix 3.

      This riddle is an example of the sort of problem that Diophantus relished. His speciality was to tackle questions which required whole number solutions, and today such questions are referred to as Diophantine problems. He spent his career in Alexandria collecting well-understood problems and inventing new ones, and then compiled them all into a major treatise entitled Arithmetica. Of the thirteen books which made up the Arithmetica, only six would survive the turmoils of the Dark Ages and go on to inspire the Renaissance mathematicians, including Pierre de Fermat. The remaining seven books would be lost during a series of tragic events which would send mathematics back to the age of the Babylonians.

      During the centuries between Euclid and Diophantus, Alexandria remained the intellectual capital of the civilised world, but throughout this period the city was continually under threat from foreign armies. The first major attack occurred in 47 BC, when Julius Caesar attempted to overthrow Cleopatra by setting fire to the Alexandrian fleet. The Library, which was located near the harbour, also caught alight, and hundreds of thousands of books were destroyed. Fortunately for mathematics Cleopatra appreciated the importance of knowledge and was determined to restore the Library to its former glory. Mark Antony realised that the way to an intellectual’s heart is via her library, and so marched to the city of Pergamum. This city had already initiated a library which it hoped would provide it with the best collection in the world, but instead Mark Antony transplanted the entire stock to Egypt, restoring the supremacy of Alexandria.

      For the next four centuries the Library continued to accumulate books until in AD 389 it received the first of two fatal blows, both the result of religious bigotry. The Christian Emperor Theodosius ordered Theophilus, Bishop of Alexandria, to destroy all pagan monuments. Unfortunately when Cleopatra rebuilt and restocked the Library, she decided to house it in the Temple of Serapis, and so the Library became caught up in the destruction of icons and altars. The ‘pagan’ scholars attempted to save six centuries-worth of knowledge, but before they could do anything they were butchered by the Christian mob. The descent into the Dark Ages had begun.

      A few precious copies of the most vital books survived the Christian onslaught and scholars continued to visit Alexandria in search of knowledge. Then in 642 a Moslem attack succeeded where the Christians had failed. When asked what should be done with the Library, the victorious Caliph Omar commanded that those books that were contrary to the Koran should be destroyed, and furthermore those books that conformed to the Koran were superfluous and they too must be destroyed. The manuscripts were used to stoke the furnaces which heated the public baths and Greek mathematics went up in smoke. It is not surprising that most of Diophantus’ work was destroyed; in fact it is a miracle that six volumes of the Arithmetica managed to survive the tragedy of Alexandria.

      For the next thousand years mathematics in the West was in the doldrums, and only a handful of luminaries in India and Arabia kept the subject alive. They copied the formulae described in the surviving manuscripts of Greece and then began to reinvent for themselves many of the theorems that had been lost. They also added new elements to mathematics, including the number zero.

      In modern mathematics zero performs two functions. First, it allows us to distinguish between numbers like 52 and 502. In a system where the position of a number denotes its value, a symbol is needed to confirm an empty position. For instance, 52 represents 5 times ten plus 2 times one, whereas 502 represents 5 times a hundred plus 0 times ten plus 2 times one, and the zero is crucial for removing any ambiguity. Even the Babylonians in the third millennium BC appreciated the use of zero to avoid confusion, and the Greeks adopted their idea, using a circular symbol similar to the one we use today. However, zero has a more subtle and deeper significance which was only fully appreciated several centuries later by the mathematicians of India. The Hindus recognised that zero had an independent existence beyond the mere spacing role among the other numbers – zero was a number in its own right. It represented a quantity of nothing. For the first time the abstract concept of nothingness had been given a tangible symbolic representation.

      This may seem a trivial step forward to the modern reader, but the deeper meaning of the zero symbol had been ignored by all the ancient Greek philosophers, including Aristotle. He had argued that the number zero should be outlawed because it disrupted the consistency of the other numbers – dividing any ordinary number by zero led to an incomprehensible result. By the sixth century the Indian mathematicians no longer brushed this problem under the rug, and the seventh-century scholar Brahmagupta was sophisticated enough to use division by zero as a definition for infinity.

      While Europe had abandoned the noble search for truth, India and Arabia were consolidating the knowledge which had been smuggled out of the embers of Alexandria and were reinterpreting it in a new and more eloquent language. As well as adding zero to the mathematical vocabulary, they replaced the primitive Greek symbols and cumbersome Roman numerals with the counting system which has now been universally adopted. Once again, this might seem like an absurdly humble step forward, but try multiplying CLV by DCI and you will appreciate the significance of the breakthrough. The equivalent task of multiplying 155 by 601 is a good deal simpler. The growth of any discipline depends on the ability to communicate and develop ideas, and this in turn relies on a language which is sufficiently detailed and flexible. The ideas of Pythagoras and Euclid were no less elegant for their awkward expression, but translated into the symbols of Arabia they would blossom and give fruit to newer and richer concepts.

      In the tenth century the French scholar Gerbert of Aurillac learnt the new counting system from the Moors of Spain and through his teaching positions at churches and schools throughout Europe he was able to introduce the new system to the West. In 999 he was elected Pope Sylvester II, an appointment which allowed him to further encourage the use of Indo-Arabic numerals. Although the efficiency of the system revolutionised accounting and was rapidly adopted by merchants, it did little to inspire a revival in European mathematics.

      The vital turning point for Western mathematics occurred in 1453 when the Turks ransacked Constantinople. During