And there’s the rub. If our goal is, again, to get the single best person for the job, we still need to weigh the likelihood that there’s a stronger applicant out there. However, the fact that we have full information gives us everything we need to calculate those odds directly. The chance that our next applicant is in the 96th percentile or higher will always be 1 in 20, for instance. Thus the decision of whether to stop comes down entirely to how many applicants we have left to see. Full information means that we don’t need to look before we leap. We can instead use the Threshold Rule, where we immediately accept an applicant if she is above a certain percentile. We don’t need to look at an initial group of candidates to set this threshold—but we do, however, need to be keenly aware of how much looking remains available.
The math shows that when there are a lot of applicants left in the pool, you should pass up even a very good applicant in the hopes of finding someone still better than that—but as your options dwindle, you should be prepared to hire anyone who’s simply better than average. It’s a familiar, if not exactly inspiring, message: in the face of slim pickings, lower your standards. It also makes clear the converse: with more fish in the sea, raise them. In both cases, crucially, the math tells you exactly by how much.
The easiest way to understand the numbers for this scenario is to start at the end and think backward. If you’re down to the last applicant, of course, you are necessarily forced to choose her. But when looking at the next-to-last applicant, the question becomes: is she above the 50th percentile? If yes, then hire her; if not, it’s worth rolling the dice on the last applicant instead, since her odds of being above the 50th percentile are 50/50 by definition. Likewise, you should choose the third-to-last applicant if she’s above the 69th percentile, the fourth-to-last applicant if she’s above the 78th, and so on, being more choosy the more applicants are left. No matter what, never hire someone who’s below average unless you’re totally out of options. (And since you’re still interested only in finding the very best person in the applicant pool, never hire someone who isn’t the best you’ve seen so far.)
The chance of ending up with the single best applicant in this full-information version of the secretary problem comes to 58%—still far from a guarantee, but considerably better than the 37% success rate offered by the 37% Rule in the no-information game. If you have all the facts, you can succeed more often than not, even as the applicant pool grows arbitrarily large.
Optimal stopping thresholds in the full-information secretary problem.
The full-information game thus offers an unexpected and somewhat bizarre takeaway. Gold digging is more likely to succeed than a quest for love. If you’re evaluating your partners based on any kind of objective criterion—say, their income percentile—then you’ve got a lot more information at your disposal than if you’re after a nebulous emotional response (“love”) that might require both experience and comparison to calibrate.
Of course, there’s no reason that net worth—or, for that matter, typing speed—needs to be the thing that you’re measuring. Any yardstick that provides full information on where an applicant stands relative to the population at large will change the solution from the Look-Then-Leap Rule to the Threshold Rule and will dramatically boost your chances of finding the single best applicant in the group.
There are many more variants of the secretary problem that modify its other assumptions, perhaps bringing it more in line with the real-world challenges of finding love (or a secretary). But the lessons to be learned from optimal stopping aren’t limited to dating or hiring. In fact, trying to make the best choice when options only present themselves one by one is also the basic structure of selling a house, parking a car, and quitting when you’re ahead. And they’re all, to some degree or other, solved problems.
When to Sell
If we alter two more aspects of the classical secretary problem, we find ourselves catapulted from the realm of dating to the realm of real estate. Earlier we talked about the process of renting an apartment as an optimal stopping problem, but owning a home has no shortage of optimal stopping either.
Imagine selling a house, for instance. After consulting with several real estate agents, you put your place on the market; a new coat of paint, some landscaping, and then it’s just a matter of waiting for the offers to come in. As each offer arrives, you typically have to decide whether to accept it or turn it down. But turning down an offer comes at a cost—another week (or month) of mortgage payments while you wait for the next offer, which isn’t guaranteed to be any better.
Selling a house is similar to the full-information game. We know the objective dollar value of the offers, telling us not only which ones are better than which, but also by how much. What’s more, we have information about the broader state of the market, which enables us to at least roughly predict the range of offers to expect. (This gives us the same “percentile” information about each offer that we had with the typing exam above.) The difference here, however, is that our goal isn’t actually to secure the single best offer—it’s to make the most money through the process overall. Given that waiting has a cost measured in dollars, a good offer today beats a slightly better one several months from now.
Having this information, we don’t need to look noncommittally to set a threshold. Instead, we can set one going in, ignore everything below it, and take the first option to exceed it. Granted, if we have a limited amount of savings that will run out if we don’t sell by a certain time, or if we expect to get only a limited number of offers and no more interest thereafter, then we should lower our standards as such limits approach. (There’s a reason why home buyers look for “motivated” sellers.) But if neither concern leads us to believe that our backs are against the wall, then we can simply focus on a cost-benefit analysis of the waiting game.
Here we’ll analyze one of the simplest cases: where we know for certain the price range in which offers will come, and where all offers within that range are equally likely. If we don’t have to worry about the offers (or our savings) running out, then we can think purely in terms of what we can expect to gain or lose by waiting for a better deal. If we decline the current offer, will the chance of a better one, multiplied by how much better we expect it to be, more than compensate for the cost of the wait? As it turns out, the math here is quite clean, giving us an explicit function for stopping price as a function of the cost of waiting for an offer.
This particular mathematical result doesn’t care whether you’re selling a mansion worth millions or a ramshackle shed. The only thing it cares about is the difference between the highest and lowest offers you’re likely to receive. By plugging in some concrete figures, we can see how this algorithm offers us a considerable amount of explicit guidance. For instance, let’s say the range of offers we’re expecting runs from $400,000 to $500,000. First, if the cost of waiting is trivial, we’re able to be almost infinitely choosy. If the cost of getting another offer is only a dollar, we’ll maximize our earnings by waiting for someone willing to offer us $499,552.79 and not a dime less. If waiting costs $2,000 an offer, we should hold out for an even $480,000. In a slow market where waiting costs $10,000 an offer, we should take anything over $455,279. Finally, if waiting costs half or more of our expected range of offers—in this case, $50,000—then there’s no advantage whatsoever to holding out; we’ll do best by taking the very first offer that comes along and calling it done. Beggars can’t be choosers.
Optimal stopping thresholds in the house-selling problem.
The critical thing to note in this problem is that our threshold depends only on the cost of search. Since the chances of the next offer being a good one—and the cost of finding out—never change, our stopping price has no reason to ever get lower as the search goes on, regardless of our luck. We set it once, before we even begin, and then we quite simply hold fast.
The University of Wisconsin–Madison’s Laura Albert McLay, an optimization expert, recalls turning to her knowledge of optimal stopping