Еще одно значительное дошедшее до нас произведение примерно того же периода – уже упоминавшийся трактат «Цзю Чжан», содержащий богатый математический материал, такой как извлечение корней, решение систем уравнений, площади и объемы и, опять же, прямоугольные треугольники. В комментарии Чжан Хэна, относящемся к 130 г. н. э., значение числа π приближенно оценивается как
Комментарий Чао Чуньчина к трактату «Чжоу Би» где-то в III в. добавил к основному тексту метод решения квадратных уравнений. Но самое существенное дополнение к «Цзю Чжан» сделал в 263 г. величайший китайский математик древности Лю Хуэй. Он предварил трактат своим объяснением:В прошлом тиран Цинь сжигал написанные документы, что привело к гибели классического знания. Позже Чжан Цан, правитель Бэйпина, и Гэн Шоучан, помощник министра сельского хозяйства, прославились своим талантом к вычислениям. Поскольку древние тексты сильно пострадали, Чжан Цан и его люди изготовили новый вариант, удалив плохо сохранившиеся части и заполнив образовавшиеся пробелы. Таким образом, они переработали некоторые части, в результате чего те стали отличаться от старых, сохранившихся частей.
В частности, Лю Хуэй дал доказательства того, что приведенные в книге методы работают; он использовал методики, которые сегодня мы не признали бы строгими, как и методики Архимеда в трактате «О методе». Кроме того, Лю Хуэй привел дополнительные материалы по топографической съемке, которые публиковались и отдельно в виде «Хай дао суань цзин» – «Трактата о морском острове».
В первой главе «Математики в девяти книгах» объясняется, как вычислять площади полей разной формы: прямоугольных, треугольных, трапецеидальных и круглых. Приведенные в ней правила верны, за исключением правила для круга. Даже здесь предложенный рецепт сам по себе верен: умножить радиус на половину длины окружности. Однако длина окружности вычисляется как утроенный диаметр, то есть, по существу, считается, что π = 3. Если говорить о практической применимости метода, то площадь круга здесь получается меньше реальной менее чем на 5 %.
В конце I в. до н. э. правитель Ван Ман велел астроному и создателю календаря Лю Синю придумать и предложить стандартную меру объема. Лю Синь изготовил очень аккуратный цилиндрический бронзовый сосуд, который и должен был служить стандартной мерой при сравнении. Тысячи копий этого сосуда использовались по всему Китаю. Оригинальный сосуд в настоящее время хранится в пекинском музее, и его размеры позволили некоторым