Несколько лет назад я был уверен на 90 % в том, что Большой взрыв действительно был, и в том, что вся наблюдаемая нами Вселенная когда-то выглядела как сжатый шар, гораздо более горячий, чем центр Солнца. Теперь эта теория обоснована гораздо лучше: в 1990-е гг. колоссальный прорыв в наблюдениях и экспериментах позволил лучше понять космологическую картину, и теперь я могу повысить степень своей уверенности до 99 %.
Один из самых известных афоризмов Эйнштейна – «Самое непостижимое в этом мире – это то, что он постижим»[1] – выражает его изумление тем, что законы физики, которые наш разум каким-то образом научился понимать, применимы не только здесь, на Земле, но и в самых отдаленных галактиках. Ньютон объяснил нам, что та же самая сила, которая заставляет яблоки падать вниз, удерживает Луну и планеты на их орбитах. Теперь мы знаем, что та же самая сила закручивает галактики, толкает некоторые звезды в черные дыры и вдобавок, возможно, приведет к тому, что Туманность Андромеды в конце концов сольется с нашей Галактикой. Атомы в самых отдаленных галактиках – это те же самые атомы, которые мы изучаем в наших лабораториях. Все части Вселенной, по всей видимости, развиваются так, как если бы они имели одно и то же происхождение. Без этого единообразия космология зашла бы в тупик.
Последние достижения акцентируют внимание на новых загадках, связанных с происхождением Вселенной, действующими в ней законами и даже с ее окончательной судьбой. Правда, загадки эти имеют отношение к первой крохотной доле секунды после Большого взрыва, когда условия были такими экстремальными, что реальную физическую картину понять непросто – возникают вопросы о природе времени, количестве пространственных измерений и происхождении вещества. В этот первоначальный момент все было сжато до такой огромной плотности, что (как это символически отражено в изображении Уробороса) космос и микромир наложились друг на друга.
Окружающий нас мир невозможно делить бесконечно. Мы пока не знаем все детали, но большинство физиков предполагают, что при размерах порядка 10–33 см возникает некая неоднородность. Это в 1020 раз меньше размера атомного ядра, что приблизительно эквивалентно соотношению атомного ядра и крупного города – потребуется такое же количество кадров в нашем воображаемом эксперименте с «зум-объективом». После этого мы натыкаемся на барьер: если бы и существовали более мелкие структуры, то они выходили бы за пределы наших представлений о пространстве и времени.
Что же насчет самого крупного масштаба? Существуют ли области, свет от которых еще не добрался до нас за примерно 14 млрд лет, прошедших со времени Большого взрыва? У нас просто-напросто нет никаких прямых доказательств, чтобы доказать или опровергнуть это. Тем не менее теоретически нет никаких границ для расширения нашей Вселенной (в пространстве или в будущем времени) и нет никаких ограничений по поводу того, что может попасть в поле зрения в далеком