Интернет-журналистика и интернет-реклама. Вячеслав Шпаковский. Читать онлайн. Newlib. NEWLIB.NET

Автор: Вячеслав Шпаковский
Издательство: Инфра-Инженерия
Серия:
Жанр произведения: Учебная литература
Год издания: 2018
isbn: 978-5-9729-0202-6
Скачать книгу
коммуникации / Эпистемический ресурс Академии медиаиндустрии и кафедры теории и практики общественной связности РГГУ [Электронный ресурс]. – Режим доступа: http://jarki.ru/wpress/2013/02/18/3208/.

      9

      Дихотомия (греч. «рассечение на две части») деление объема понятия на две взаимоисключающие части, полностью исчерпывающие объем делимого понятия.

      10

      Парадйгма (греч. «пример, модель, образец») – совокупность фундаментальных научных установок, представлений и терминов, принимаемая и разделяемая научным сообществом и объединяющая большинство его членов.

iVBORw0KGgoAAAANSUhEUgAAAiUAAADRCAIAAACck1WaAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR42u2dzXHkWJKER4s1m9VlbbSY0WFHhWoNKMGMAF0CtAB17z7zznOd65obRp/y9Y6Hh0T+MZHJzw1WlgSBByTCI/xF4LHiLwcAAADg9vgLjwAAAAB6AwAA4Hn15q//9d9sbGxsbGznbafpDTp8X2ACADnB8zEEvcGlAYCcAL3BYABAToDeAFwaQE4A0BtcGgDICdAbgEsDyAnQG/iESwMAOQF6g8EAgJwAvQG49M7w++9/fP3165cvv9Tz/Of//pMHAjmviO/fvxe7/vWvf+svHH/8+MEzeTy9qbhQN1CRQj+WFf/x9398NnNe0QQvLy81WjmG9yj+fvv27bmfYX1l/7VzfeXffvuNQHBfcpYJmvBrT4XsR5zKmF0VoNK/wAPrjYIjenM23t7earS//c/f9AD1Y3nIcz9Afc0iD86/K3Jq7mjv1o9lrId7CHXntVWKAx+eR280/Um9qbjpz/qtZxavr6/5H/jUkQ49Fq36MJ6bkywfXKffMQO4rgkyxdGsv/4tV9G31m9rcwZQv/ITK6fyc5BpvN9Row5Q4EhzzCyly/ncxWmjdUIn6sZ8S+1u6xTfWB2j4KUT61q6sTrAQW3x2+Vd6RFp/NxfJ9aXqk1ilpuJpG+dt1dPwE/Yt6GHn9/U2VjR2N/do9UInm/ZKURmH+NLNL/Qw/Gw9yVnpjiytT6XIXzn+r55yvgcMnnNp33U2ZOZsuN6oXWRXQo1tb/FihWfynH87XLn2d63yLot3mc+6xQXBhsPP4ve6HHUj/nsVvSmDKMnXr+13qgcV1t9EEtk7DxXVywm5cF19TtW/K9rAqc4ZpidzQ/BM00/BM3d/HD08P1U64OSJD1Vxc2Uh/P0xifq6nI8Xb0up6unHuTV9e10V3KeunnbXftn326L3tjh9aUULh076ngHOD3M/Ap1D760bzu/qb6dr5tPTMRO3uqY+q0+JOHbuQ4iKw/8g8npFEdPRjem7y476pmvPwcdI2LILvUYtzj7SXozY5fuRDMPF/zf3rHoUwVPNXTnUpHaaeuf530z1m3xvuSzp6FbPPQ59UZKYxMe1Rv9WIZM9xMzcq6n/T43KaWD91BNvroJHH/thBahPKAeS3sITUJ0vHxPD00nip168tp/tt74TjRbdOnPPpZ6oIM9B3Rwb1ex386+3VG90YXySzW9GRNKzZkyomnkuj2ncbqQg6Ovm7Ejn3zb7xRqUW8cFnelN7orWSSN6zm1DhCLZs+h6Y005qizn6o3M3a1AU2YmU+NGV6+75HGaBZ4qvctsm6L9zU+68fPqzf618lK05uxlJEUTPfLilzW2dp+EXqkwtPoTRZe5KXNNzzBWVRx/ZgPvzwkI3JuqTejpdrxWSnKSaWrK7qK7lbBfZZ/5I8zvZl9uwwNGfddilQUWNGbolD7anXAWHnLgFX/1mOsx1Xj18gaULEmL5Q/tv0relPjqEh1efi4OjnHIpK+l5iZdbbZc2iPOgvjR53d8aRZJ4tXYwTPHzfqTSYNrQConXkD+RW2e98i64563yKfW736c+mNw9ai3szKsq6ZNKqNEuL9rtod9rRa5hYmcIrTimxn5DdZAZiFsy35jXm/WHLJuW2rIx3Nb3SM93uo2bfLonnWtfLVS6Ni0xtfOr/jbAat29NybV1R7waOzuuzBLeuN66gtgU4eyCnE68mJNKbU/Mbzw+OOvtKfmMtz2c7Y1fODPKwmU8lexdv0ktGT/W+RdYd9b6Rz67RWcs/l97om2/Xm/zc3t/4Oc4o6OebBysAPc37m8Ow8M9zKyWRWUH2QyioKOGicL4Vk3O2N/wn6U1m8aN1MlK74ND0Jq9eN++pQ4aS9OGVb9fEIPVGx2zRm7puHZmrsBZf1ztcepGLU3ndc95DToPa/pX3N/mSYD96o0edE/9ki+zoMuPKc0i9cbDe4uwzvclXm4urV5JdJuT3dzTWjT41Lnupm5Fa6HKyUfsKW7xvxrp17xv5zPubPxYj1+JzXMyX/ShzEcjiK8RkVX2W2Z5vfVorJXsuNq7HW1yTM66Q8fG5QuboeoHFwsIYlcahxm1cFZbVubo978+rzL7dit74m+Ycs+mN3gnnI/UqoKxU6HS/4m4py2y9UBrO1nS0mtXTxsTr7uTMxXXj7MRfLe21+Bxm69OOOnsys63uq1sag+yMXTZ3GmLmU/VbcyAXi2bgWl9vOfO+GevW9Wbkcy5M/1x6czaJ23s5PbUH/audDzBBy/33hrbYpt2nbp4/snsacmY97XGxc5/aA0PQG/Rmd8gVzOgNeoPeoDfozWPrTVttvCu0haTozdOTc3Gd98Nhzz6F3oB76g0AkBOgNwATAMgJ0BuASwPICcAV9YaNjY2Nje28jfyGKSQAkBNQTwOYAEBOgN4AXBoAyAnQG1waAMgJ0BuASwPICWAIeoNLAwA5AXqDwTABgJwAvQG4NICcAKA3uDTYG9Qb+/D+H8uOvT4hJ0Bv7oDX11f3FKoP/s9iF1sbnTdy/ge0s2FnfbpwaXAe1GBU/1P9FfueoTenQv8LtbcnsAV6cybUa09d/9RI1Z+9X61bx3b369CkUv/FvfVmNqw6r2Sv4rt0+URvAHpzC725Y9NeGLIjvVGg94xDLW3UDTp1Qn1kz0hxNMf0OLNh60O2ryihuksB5An0pkzpztw2a4m6pwtlET/qbLjr1FbdRGwjn9v2j8gOxB4tL7cYgNw5uHbqhhe/Qp6lWYt+1YayBet7uZGPZjaPHvKeWG8WLXuIHt5Z83A36DwyizSyezYUd/dxn5uFHLdRH5uIozdXhjpoORhJAGqnPsxk42y9mQ3rvMqR6y7dkx5db+Susmb5WH3WFGGmN/XM67OsUwc47zxPbxzi66I1rD6v603mtfWv6quLXyHPyvcx2VI+/8vCvBlFIvRmD/W0xTLJomVlRMlMfdCJdVgdoIak9Sv1A8yqSTFKO81thZfXd4gG4qcDjvaPUxb05iaw5kv2pTct4lsYZJv1LR276c1s2NqZRERvzoPSR3mj4m/tkWeOelNel7M5HV871/VmZRrY9EY08EsUsUv35t86ZBz9Cj6rdmayop26otjbbqZEq35FfrMHiAwjcxYte3jvMKsfrTdjbaZxxhOv8UJJNhdyRr153D6hj7c+zWYgv3lcf86ymKeN9Tyd6+jZNv3Qpvlg2znmN7qQlcAhfqWepjxDn603o6FnXyGnyTkF1lAqwGbgkN4oxFQkeoJXCM/xcnGxVL5oWWmGVMR6UzuzbKtnMkanxpwxquQpbQ5NPe3joCTUwpM60eah5+nNbFhNQpOULrni0qc+7TE5cE1JW+Y3YxTeWE8bPTNfmby8o9XTXKxIvWm8mn2FNgt2NV9pTe1x8u2b0VfW6ejNfvQmZ5YrltWCVVtTJKzf1ggtL0nOJIcbP5Nss/xGlMuh0Jvr5zS2h/1TBpONxYNT16ct6s1sWB2WFRjWp50BPV55bHv5kRbJ9zf54nS73shd28LW1Jv63PRGmqcJ7Mr7m5WvkFV+79fU2AsNUm8y4qA3d5wD+c8eRJvREKNlVSB1zLHe1L+ikJe6HH6+vxHftNjEU2fVh5X7OilfeX+jz+jNbWccnva2Vy/+g5gzso18LeRazcqwKrXdN6V9mhJ5Lvda0Ztcw+O8Z6Y3yoe8NGi00eL6NNXW285xUVne8Owr+KycvXphwqg3yS705o5zIHNskTaLlhVbPNWw3kg8/Nd7qROOKl6f5iPNBFOU9Wn88QcuDQDkBOgNLg0A5AToDcClAeQEMAS9waUBgJwAvQGYAEBOgN4AXBoAyAlupTdsbGxsbGznbeQ3TCEBgJyAehrABAByAvQG4NIAQE6A3uDSAEBOgN4AXBpATgBD0BtcGgDICdAbDIYJAOQE6A3ApQHkBAC9waXB1fH1169qiqXGNmPvOMgJwAPrzdvb22L7tWyS5oav21HxwsNmp6MLh8WlnxvFRne2f9wuWJDz8LNx5348Hb3ZBZ9KDNzDVRQ5/Lnpr9o1ntQqUd1eNVFVU+GctJ49LC4NiCYPJDZu1crUAb35D7I7b2mA9KbmI+5ALE1SC/HtyU32ulez2BKeC4fFpa+OWWPdsRlzNqXO5NWnvLy8uOnv4ll1pH6VO9VYXoP4gHEmRDR5LFQYWZ9KmmCamzpWmEWZFbkBeR45kjD7WLuftM+ln/Qu+KTW8WVaTUlEAmckQrl96sSWqkiN6WBRg9ePKtxdMiwufXVoZpCeeVRvMnlVD3nPZ9/ekQ7czqoJTdMbxZdRb9R2Hr15xNsWB7JKb5EY9aaMnpPOIoBkpj7I+nVYHVBjKpKIb4skrB9r2O/vqFNe36EiiqY1ZteM9ujNR0B6oEmB3tCWbdLVLQyeLKxsmkTkkWKeSvOLw+LSO9Ebm8MvUTzNtEioECr/z1zEM8r64Ajis9LW3imVGvMbkYf85kHJKVLZdmXHsnJb+iG9KRa1TMg/Wm8W6TqSsMYfMxXrU1ZZVmiP3twcig5lOU0K6tHnG5erCIMtTX6zz9CwUk9T+vvtHTKW9rg04eMdHZq0eHAlN9YbhYz6tyiReuMXezUOevO4pHJOMyOMJ6NNM6Qi1pvaqWQ3/wf+cUyVyFpSPlJRp8xoj958RObrQKAfyzAlQu1Fi2evZ0B5rrTtisOiN9fNb2R9eXvW0+SQTW9aflO/Oprf1ExT3q6d9aMrJ9ab3I/ePHQ9zUFc081Rb5zf+D2NFq86aMj69duiU8tLRhJKb5pyiHXr+U3SHr25LWSkXJ+mR+9Zbc5wT81pbHJL2uXD4tK30xt9bnojM5X52psYqUud0uRk/f2N9mtMZ7qpN7kfvXlccpbRJRJFiXxx0vTm8LOm+uMdmSVbb+pfTV/qAC0HmJFQ81pdVO9vzN6V9zdJe/Tm5lBE8Js9Rwq/1Dkv31z8m57Lh8WlbzHhGC1i83lnW5/mP63Qb1UsbUuD2lnSpDpSO13Qb/mN96M3j0vO/Ku+su/4d7sOC85LVFtLVsj6Eg8PlTrRSJhHmoSuxbE+jT/+wKUBgJwAvcGlAYCcAL0BuDSAnACGoDe4NACQE6A3ABMAyAnQG4BLAwA5wa30ho2NjY2N7byN/IYpJACQE1BPA5gAQE6A3gBcGgDICdAbXBoAyAnQG4BLA8gJYAh6g0sDADkBeoPBMAGAnAC9Abg0gJwAPIfetD4Q2tQIVr32soP9ScgGGNkC58JhcWlANNk5son40T9LBJ83vykBUEcs9bxTGyL3kz9pqBKbbBuqrq6XD4tLA6LJY6FCwdjfE3x2vcmOvyU8bssoxrgj/UZkq9CSFunN5cPi0g1uX5gdDLOrZlrEHXyz56anBZmGug1r7VS+O7uuL6qZhJLXPCsz2mykqMmHN3cczzufZcYe5+XlxSPUAdnh8XGbNj6T3sjKI4VsWYUdH5AGdf1D3T9ryyPrQ7N1WV8NQLO/p8+lv+e++CTDyCRtSlLBZYxfW3LqYoxikLh1+bC4dIObMatD+9j7+Qy9EROyrNr6AecBvgHJjPrAl6HHRLl+lfFCI9sKuvRMb2bj+Op+GupJnHeI3tyXn4s+nmTLSWcdL5lxP+k6rA4Qr1SAsUopmKixtK/1/R11yus7RC15h4OP9ieZ0Zs7JDcZerJ1vIXBk4WVzZMIz5FrrqGANRsWl76W3jhqZ9IjX92uN3WKp4eFIoaSj0xM8wA/Scd3FUvrRwcIz149aa0PDjRH9WY2TupNPYGcq9bxe3hB+JnJ6XA/0xtNHfIA/2i9GQc0wUTsReubY6aNYpcCUdObu0ehT6c3Mobtd3kiUhFBkU5zjTq9LE1+cwu9Wamn6Znr83a9qQ9tDtFCRps3jHrjKkqW+7T5xLox60HqzeKlZ+Ok3qhI4ltdvEn05iNRQSBnCY1CJm3TDEUh603tbNY3Tzy1Ha0/Rpg8pdVyqad9NDLZFFHai5ZxPruCYowr8v6x7H3hsLj0Sn4jq+l5ZpbgcsFJ+c16pK4jt+Q3Zff2xq5FFjNkS36zOM6oN+Q3O0Ezx0p+YzNlidV6ozy45SUSj8xvFi9XIxzNbxSdcij05raQ8bLYrT055TxpIZlsn+vTZNELh8Wl1wNufW56o/xGU8iT3t/ki5b1bLiu2N7fZFKV711aoSP146T3N7Ovr+P1ZXl/c3co1rc3f6NlRbYf78iU1HpT/8qmdYCy+cPP+r/YXlYWZ/T+pn7l9zcKMjWtWXl/o8/ozYcmN+M6Mb99OS/fVODwGiePcOGwuPTo1WM9TelF29mWAyxulv9WwcjCRavj5fo0Ly7ySyMHlLxE1gBbWWNlfdo4zqg3dVGzjvVpd09uVvJLW9Z5iWhjfbLe5JpD683h5zKBtj7NRzr/HhdSHlifBnDpJ3iSG/OJJhIrO3mkPASA3uDSAL2BnAC9Abj0vvUGQE6A3mAwACAnQG8ALg0gJwDoDS4NAOQE6A3ApQHkBOjNsf+LjI2NjY2NbbaR3zCFBAByAuppABMAyAnQG4BLAwA5AXqDSwMAOQF6A3BpADkBDEFvcGkAICdAbzAYJgCQE6A3AJf+ZPj661c1xVIXrFm3LsgJwKPqTfm2+xS58Zp6u2rnqX15WzsjbfrPgy8ZFpd+ejxZw7RnJWeZyREje+JtRzb0w9CfSG/Uvtsm14ds36tmkZc0fi5dUcvY6w6L3gD05i4osclu8eXdJ52e3b7HZvbgmfXm5eXF1EmFyLa+Ra+x4fRGqNO4NOaKw6I3t8huZab6t1jhrs9uzesG8q077yHaS2eKnDPfbBRdfDPlNN1RuKnrusN8C2pEk10hO8TXxPFUvSkrp6Hr9FbqUIFEBFPfaFdWs6d4XVq0zEbmpqUbkNfdimAj1RUA3azaNyAVdAK3Wzl8PL0pk9gGNkPtyadfbp86ccZcRiS44rDozVWg2YBfmShwyGSK9UpDxYo6rOwlU9Zv05QOQPWvbXpUb+rqqp6NeqN6C3qzzxtTOC6RUEw/tUpRIb7OqqmGpKU+e04z6k1RItXIMuPqSJGkTpcgVYTRUFlKEa9mVNedjGUeU1FzL/TmandcRpK1yq5y/ooC6eoWBkWi9S2nvbKxh5oNi0vfC5ITeX5OEVqeIXdNh5R/ijb6laLASXpTnqy5TtMb0Yz8Zs/kVKxQ+uvk42hwkEErROTrnxW9kbA5pIh1+nGxGm8KqYZ/lOrWJ7NxUW92y8OH1BsHEZm5rHitRESBwzYmv9nnRDWnCKPeqPqxuAZEJ8qTFXSa3uTBTW8UETRs6o1f7GXZDb3ZFRSay6+lHGXZS1YSzupp46qirN1Zb+o2spwr6o6xZZHqOQPOU3JiXVeknnbNepoVXtOHMkztaS9a2gRkI2qQjFzXGha9ua7eHM1vNIedre+oiJATwy35jaa3LoxYbzTbVYhBb/ZJTkUJ2S6DxnmjqfDVTm/5ja+l0lnTm7Z4wXrT8ptFqhffjuY3ZyyIQG+mkGFkhnrEejUn28ic+fmMWJZTg6sMi95cESp4uuSdVVP5cJqp6NGWCRx+1t9tx416k1l16k2+tkVv9klOiUGG+DGOH9UYsUjL38dFQ+39jSjRhM2fawRNULRKO/9+a3x/06iu6FcXWnl/g95cOeLkoiPzxvXZsxfILzLp8mHRm+tC707b+jTZrhU0yi2zcKF1OyttoFb0JvPalt+4MoPe7Hm9gIuluVZtI1QyHV//LOqNp61t/Yj1JgmcK99cE8v1aY3qdWnzPDnJ+jSA3nwQWj3taDFky04AOQF6g8EwAXoDOQF6A3DpfesNgJwAvQG4NICcAL2BT7g0AJAToDcYDADICZ5Tb9jY2NjY2M7byG+YQgIAOQH1NIAJAOQE6A3ApQGAnAC9waUBgJwAvQG4NICcAIagN7g0AJAToDcYDBMAyAnQG4BLA8gJAHqDSwMAOQF6cwLUbHHsgfbt2zf3JmrdxTfi9fXVvYzceE09+Nwc6ZK257g0QG9uje/fv7+8vLRWvLMmjSdBrRezhVpdYlfBAb25id6MXRSzG6ua8Z3a+Hnsz3r42b1Y/9e9+hDf