In physics Albertus Magnus was, if possible, more advanced and progressive even than in chemistry. His knowledge in the physical sciences was not merely speculative, but partook to a great degree of the nature of what we now call applied science. Humboldt, the distinguished German natural philosopher of the beginning of the Nineteenth Century, who was undoubtedly the most important leader in scientific thought in his time and whose own work was great enough to have an enduring influence in spite of the immense progress of the Nineteenth Century, has summed up Albert's work and given the headings under which his scientific research must be considered. He says:
"Albertus Magnus was equally active and influential in promoting the study of natural science and of the Aristotelian philosophy. His works contain some exceedingly acute remarks on the organic structure and physiology of plants. One of his works bearing the title of 'Liber Cosmographicus de Natura Locorum,' is a species of physical geography. I have found in it considerations on the dependence of temperature concurrently on latitude and elevation, and on the effect of different angles of incidence of the sun's rays in heating the ground, which have excited my surprise."
To take up some of Humboldt's headings in their order and illustrate them by quotations from Albert himself and from condensed accounts as they appear in his biographer Sighart and in Christian Schools and Scholars6, will serve to show at once the extent of Albert's knowledge and the presumptuous ignorance of those who make little of the science of the medieval period. When we have catalogued, for instance, the many facts with regard to astronomy and the physics of light that are supposed to have come to human ken much later, yet may be seen to have been clearly within the range of Albert's knowledge, and evidently formed the subject of his teaching at various times at both Paris and Cologne, for they are found in his authentic works, we can scarcely help but be amused at the pretentious misconception that has relegated their author to a place in education so trivial as is that which is represented in many minds by the term scholastic.
"He decides that the Milky Way is nothing but a vast assemblage of stars, but supposes naturally enough that they occupy the orbit which receives the light of the sun. The figures visible on the moon's disc are not, he says, as hitherto has been supposed, reflections of the seas and mountains of the earth, but configurations of her own surface. He notices, in order to correct it, the assertion of Aristotle that lunar rainbows appear only twice in fifty years; 'I myself,' he says have observed two in a single year.' He has something to say on the refraction of a solar ray, notices certain crystals which have a power of refraction, and remarks that none of the ancients and few moderns were acquainted with the properties of mirrors."
Albert's great pupil Roger Bacon is rightly looked upon as the true father of inductive science, an honor that history has unfortunately taken from him to confer it undeservedly on his namesake of four centuries later, but the teaching out of which Roger Bacon was to develop the principles of experimental science can be found in many places in his master's writings. In Albert's tenth book, wherein he catalogues and describes all the trees, plants, and herbs known in his time, he observes: "All that is here set down is the result of our own experience, or has been borrowed from authors whom we know to have written what their personal experience has confirmed: for in these matters experience alone can give certainty" (experimentum solum certificat in talibus). "Such an expression," says his biographer, "which might have proceeded from the pen of (Francis) Bacon, argues in itself a prodigious scientific progress, and shows that the medieval friar was on the track so successfully pursued by modern natural philosophy. He had fairly shaken off the shackles which had hitherto tied up discovery, and was the slave neither of Pliny nor of Aristotle."
Botany is supposed to be a very modern science and to most people Humboldt's expression that he found in Albertus Magnus's writings some "exceedingly acute remarks on the organic structure and physiology of plants" will come as a supreme surprise. A few details with regard to Albert's botanical knowledge, however, will serve to heighten that surprise and to show, that the foolish tirades of modern sciolists, who have often expressed their wonder that with all the beauties of nature around them, these scholars of the Middle Ages did not devote themselves to nature study, are absurd, because if the critics but knew it there was profound interest in nature and all her manifestations and a series of discoveries that anticipated not a little of what we consider most important in our modern science. The story of Albert's botanical knowledge has been told in a single very full paragraph by his biographer. Sighart also quotes an appreciative opinion from a modern German botanist which will serve to dispel any doubts with regard to Albert's position in botany that modern students might perhaps continue to harbor, unless they had good authority to support their opinion, though of course it will be remembered that the main difference between the medieval and the modern mind is only too often said to be, that the medieval required an authority while the modern makes its opinion for itself. Even the most skeptical of modern minds however, will probably be satisfied by the following paragraph.
"He was acquainted with the sleep of plants, with the periodical opening and closing of blossoms, with the diminution of sap through evaporation from the cuticle of the leaves, and with the influence of the distribution of the bundles of vessels on the folial indentations. His minute observations on the forms and variety of plants intimate an exquisite sense of floral beauty. He distinguished the star from the bell-floral, tells us that a red rose will turn white when submitted to the vapor of sulphur and makes some very sagacious observations on the subject of germination. … The extraordinary erudition and originality of this treatise (his tenth book) has drawn from M. Meyer the following comment: 'No Botanist who lived before Albert can be compared to him, unless Theophrastus, with whom he was not acquainted; and after him none has painted nature in such living colors or studied it so profoundly until the time of Conrad Gesner and Cesalpino.' All honor, then, to the man who made such astonishing progress in the science of nature as to find no one, I will not say to surpass, but even to equal him for the space of three centuries."
We point out in the chapter on Geography and Exploration how much this wonderful Thirteenth Century added to the knowledge of geographical science. Even before the great explorers of this time, however, had accomplished their work, this particular branch of science had made such great progress as would bring it quite within the domain of what we call the science of geography at the present time. When we remember how much has been said about the ignorance of the men of the later Middle Ages as regards the shape of the earth and its inhabitants, and how many foolish notions they are supposed to have accepted with regard to the limitation of possible residents of the world and the queer ideas as to the antipodes, the following passages taken from Albert's biographer will serve better than anything else to show how absurdly the traditional notions with regard to this time and its knowledge, have been permitted by educators to tinge what are supposed to be serious opinions with regard to the subject matters of education in that early university period:
"He treats as fabulous the commonly-received idea, in which Bede had acquiesced, that the region of the earth south of the equator was uninhabitable, and considers, that from the equator to the South Pole, the earth was not only habitable, but in all probability actually inhabited, except directly at the poles, where he imagines the cold to be excessive. If there be any animals there, he says, they must have very thick skins to defend them from the rigor of the climate, and they are probably of a white color. The intensity of cold, is however, tempered by the action of the sea. He describes the antipodes and the countries they comprise, and divides the climate of the earth into seven zones. He smiles with a scholar's freedom at the simplicity of those who suppose that persons living at the opposite region of the earth must fall off, an opinion that can only rise out of the grossest ignorance, 'for when we speak of the lower hemisphere, this must be understood merely as relatively to ourselves.' It is as a geographer that Albert's superiority to the writers of his own time chiefly appears. Bearing in mind the astonishing ignorance which then prevailed