Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний. Джеффри Уэст. Читать онлайн. Newlib. NEWLIB.NET

Автор: Джеффри Уэст
Издательство: Азбука-Аттикус
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 2017
isbn: 978-5-389-14631-0
Скачать книгу
самый универсальный и систематический закон масштабирования во Вселенной охватывает поражающий воображение диапазон в двадцать семь порядков величины.

      Поскольку масса животных, изображенных на рис. 1, различается более чем на пять порядков величины (то есть более чем в 100 000 раз), от мыши, весящей всего 20 г (0,02 кг), до слона, весящего почти 10 000 кг, мы вынуждены представлять эти данные в логарифмическом масштабе, то есть откладывать по обеим осям последовательные степени десяти. Например, масса возрастает по горизонтальной оси не линейно, от 1 до 2, 3, 4… кг, а логарифмически от 0,001 до 0,01, 0,1, 1, 10, 100 кг и так далее. Если бы мы попытались изобразить тот же график на листе бумаги стандартного размера с использованием обычного линейного масштаба, все точки, кроме той, которая касается слона, сгрудились бы в левом нижнем углу графика, так как даже животные, следующие непосредственно после слона по порядку уменьшения массы, бык и лошадь, легче его более чем в десять раз. Чтобы различать точки со сколько-нибудь разумным разрешением, потребовался бы несуразно большой лист бумаги шириной более километра. А для получения разрешения, достаточного для изображения восьми порядков величины, отделяющих землеройку от синего кита, его ширина должна была бы превышать 100 км.

      Как мы уже видели в предыдущей главе при обсуждении шкалы Рихтера для землетрясений, применение логарифмической шкалы для представления подобных данных, охватывающих несколько порядков величины, имеет ясный практический смысл. Но для этого есть и более глубокие, концептуальные основания, связанные с идеей о том, что исследуемые структуры и процессы обладают свойствами самоподобия, математическим выражением которых являются простые степенные законы. Сейчас я объясню эту мысль.

      Как мы уже видели, прямая линия представляет в логарифмическом масштабе степенной закон, показатель которого определяет ее наклон (в случае закона масштабирования силы, представленного на рис. 7, он равен ⅔). На рис. 1 ясно видно, что при увеличении массы на четыре порядка (по горизонтальной оси) уровень метаболизма возрастает всего на три порядка (по вертикальной оси), то есть наклон прямой равен ¾, знаменитому показателю закона Клайбера. Чтобы более ясно представить себе, что именно это означает, возьмем пример кошки, весящей 3 кг, что в 100 раз больше массы мыши, весящей 30 г. Используя закон Клайбера, легко можно вычислить уровни их метаболизма: для кошки получается порядка 32 ватт, а для мыши – около 1 ватта. Таким образом, хотя кошка в 100 раз тяжелее мыши, уровень ее метаболизма больше лишь приблизительно в 32 раза, что дает нам яркий пример экономии на масштабе.

      Возьмем теперь корову, масса которой в 100 раз больше массы кошки: закон Клайбера предсказывает, что уровень ее метаболизма должен быть в те же 32 раза выше, а уровень метаболизма кита, еще в 100 раз более тяжелого, должен быть в 32 раза выше, чем у коровы. Такое повторяющееся поведение, наблюдаемое в этом случае, – воспроизведение увеличения уровня метаболизма в 32 раза при