К чести Рассела, нужно сказать, что в 1874 г., после того как Фруд произвел революцию в проектировании кораблей, тот пошел на попятную и стал горячим сторонником методов и идей Фруда. При этом, однако, он довольно неубедительно утверждал, что сам независимо пришел к тем же выводам и провел те же опыты много лет назад. Собственно говоря, Рассел был основным партнером Брюнеля в постройке «Грейт Истерн» и действительно пытался работать с моделями, но, к сожалению, не осознавал ни их значения, ни теории, лежавшей в их основе.
Фруд строил уменьшенные модели кораблей от метра до трех длиной, протягивал их через вытянутые бассейны, наполненные водой, и измерял их сопротивление потоку воды и характеристики их устойчивости. Благодаря своему математическому образованию он обладал техническим аппаратом, позволявшим ему масштабировать полученные результаты на случай крупноразмерных судов.
Он выяснил, что основная величина, определяющая характер относительного движения модели, – это параметр, который назвали впоследствии числом Фруда. Он определяется как отношение квадрата скорости судна к произведению его длины на гравитационное ускорение. Такое труднопроизносимое определение может показаться несколько устрашающим, но на самом деле в нем нет ничего сложного: упоминаемое в нем «гравитационное ускорение» одинаково для всех предметов независимо от их размеров, формы и состава. Последнее утверждение попросту повторяет другими словами утверждение Галилея о том, что падающие предметы разной массы достигают земли за одно и то же время. Таким образом, в том, что касается действительно изменяющихся величин, число Фруда просто пропорционально отношению квадрата скорости к длине судна. Это отношение играет ключевую роль во всех задачах, касающихся движения чего бы то ни было, от летящей пули и бегущего динозавра до летящего самолета и плывущего корабля.
Основная суть открытия Фруда состояла в том, что, поскольку основные физические свойства остаются неизменными, объекты разных размеров, движущиеся с разными скоростями, ведут себя одинаково, если соответствующие им числа Фруда имеют одинаковое значение. Таким образом, подобрав длину и скорость модели так, чтобы ее число Фруда было тем же, что и у реального судна, можно изучать динамическое поведение полноразмерного корабля еще до его постройки.
Приведем простую иллюстрацию этого принципа на примере следующей задачи: с какой скоростью должна двигаться трехметровая модель, чтобы отражать движение корабля «Грейт Истерн» длиной 210 м со скоростью 20 узлов (чуть более 37 км/ч)? Чтобы числа Фруда (то есть отношения квадрата скорости к длине) корабля и модели были одинаковыми, скорость должна быть пропорциональна квадратному корню из длины. Отношение квадратных корней из длин этих объектов равна √(210 м / 3 м), то есть √70 = 8,4. Тогда скорость трехметровой модели, имитирующей движение «Грейт Истерн», должна быть приблизительно равна