Предложенный Кетле индекс массы тела определяют как отношение массы тела к квадрату роста. Таким образом, он измеряется в фунтах на квадратный дюйм или килограммах на квадратный метр. Его идея сводится к предположению о том, что вес здорового человека, особенно такого, форма тела и содержание жиров в теле которого соответствуют «норме», масштабируется пропорционально квадрату роста. Тогда отношение веса к квадрату роста должно давать величину, приблизительно одинаковую для всех здоровых людей; ее значения лежат в сравнительно узком диапазоне (от 18,5 до 25,0 кг/м²). Выход значений за пределы этого диапазона считается признаком возможных проблем со здоровьем, связанных с недостаточным или избыточным для данного роста весом[35].
Таким образом, предполагается, что ИМТ остается приблизительно неизменным для всех идеализированных здоровых индивидуумов, то есть имеет более или менее одинаковое значение независимо от веса и роста человека. Однако из этого следует, что масса тела должна увеличиваться пропорционально квадрату роста, что, как кажется, резко противоречит тем выводам, которые мы сделали ранее из работ Галилея: тогда мы заключили, что масса тела должна возрастать гораздо быстрее, пропорционально кубу роста. Если это так, то ИМТ в используемой формулировке не может быть неизменной величиной, а должен линейно расти с увеличением роста. Это должно приводить к завышению числа диагнозов избыточного веса у высоких людей и его занижению у людей низкорослых. Действительно, существуют свидетельства того, что высокие люди имеют аномально высокие по сравнению с реальным содержанием жира в организме значения ИМТ.
Как же на самом деле масштабируется вес человека в зависимости от его роста? Разные статистические анализы данных дают разные результаты, колеблющиеся от подтверждения кубического закона до полученных в более недавних исследованиях показателей, равных 2,7 и даже меньшим значениям, более близким к двум[36]. Чтобы понять, как такое может быть, нужно вспомнить об одном важном допущении,