Измерения значений факторов в моделях бинарного выбора – только количественные. В эти модели допускается включение категориальных переменных (выступающих в качестве факторов). В данных моделях обеспечивается построение регрессионной модели зависимости с принятием во внимание вероятности, что результативной дихотомической переменной будет принято значение 0 или 1, если значение факторов – заданное.
Для того чтобы смоделировать вероятность зависимой дихотомической переменной, нужно произвести подбор специальной монотонно возрастающей функции, значения которой могут варьироваться лишь от 0 до 1.
В моделях бинарного выбора в качестве специальной функции может быть выбрана функция: 1) логистическая; 2) стандартного нормального распределения.
Если модель бинарного выбора построена на базе логистической функции, то она рассматривается как логистическая регрессия или логит-модель. Если модель бинарного выбора построена на базе функции, стандартного нормального распределения, то ее рассматривают как пробит-модель.
Посредством логистической регрессии осуществляется прогнозирование вероятности отклика для зависимой переменной от переменных независимых, которые включены в модель. Прогнозные значения вероятности можно использовать для разделения наблюдений на две группы.
При построении модели регрессии логистической можно осуществить отдельный анализ – анализ Receiver Operator Characteristic (ROC-кривых). Посредством данного анализа можно осуществить выбор оптимального порогового значения вероятности для классификации. ROC-кривую используют, чтобы представить результаты бинарной классификации и оценки уровня ее эффективности.
Использование логистической регрессии распространяется на решение задач, связанных с моделированием взаимосвязи и классификацией наблюдений. Она находит применение в скоринге: банковском (на ее основе возможно построение рейтинга заемщиков и управления кредитными рисками); потребительском (для моделирования потребительского поведения).
Регрессия мультиномиальная логистическая
Фото из источника в списке литературы [5]
В качестве логистической регрессии мультиномиальной рассматривают общий случай модели логистической регрессии, в ней у зависимой переменной имеются категории в количестве более двух.
Измерение зависимой переменной (ковариаты) в рассматриваемой регрессии возможно в таких шкалах, как порядковая и номинальная. В качестве нее может выступать переменная потребительского выбора торговой марки. Переменные независимые (факторы) могут быть количественными либо категориальными.
В данной модели для каждой из категорий переменной зависимой предусматривается построение уравнения