Essays: Scientific, Political, and Speculative, Volume I. Spencer Herbert. Читать онлайн. Newlib. NEWLIB.NET

Автор: Spencer Herbert
Издательство: Public Domain
Серия:
Жанр произведения: Очерки
Год издания: 0
isbn:
Скачать книгу
it comes against a cold body, will be condensed: altering the temperature of the surface it covers. The heat given out melts the subjacent tallow, and expands whatever it warms. The light, falling on various substances, calls forth from them reactions by which its composition is modified; and so divers colours are produced. Similarly even with these secondary actions, which may be traced out into ever-multiplying ramifications, until they become too minute to be appreciated. And thus it is with all changes whatever. No case can be named in which an active force does not evolve forces of several kinds, and each of these, other groups of forces. Universally the effect is more complex than the cause.

      Doubtless the reader already foresees the course of our argument. This multiplication of effects, which is displayed in every event of to-day, has been going on from the beginning; and is true of the grandest phenomena of the universe as of the most insignificant. From the law that every active force produces more than one change, it is an inevitable corollary that during the past there has been an ever-growing complication of things. Throughout creation there must have gone on, and must still go on, a never-ceasing transformation of the homogeneous into the heterogeneous. Let us trace this truth in detail.

      Without committing ourselves to it as more than a speculation, though a highly probable one, let us again commence with the evolution of the Solar System out of a nebulous medium. The hypothesis is that from the mutual attraction of the molecules of a diffused mass whose form is unsymmetrical, there results not only condensation but rotation. While the condensation and the rate of rotation go on increasing, the approach of the molecules is necessarily accompanied by an increasing temperature. As the temperature rises, light begins to be evolved; and ultimately there results a revolving sphere of fluid matter radiating intense heat and light – a sun. There are reasons for believing that, in consequence of the higher tangential velocity originally possessed by the outer parts of the condensing nebulous mass, there will be occasional detachments of rotating rings; and that, from the breaking up of these nebulous rings, there will arise masses which in the course of their condensation repeat the actions of the parent mass, and so produce planets and their satellites – an inference strongly supported by the still extant rings of Saturn. Should it hereafter be satisfactorily shown that planets and satellites were thus generated, a striking illustration will be afforded of the highly heterogeneous effects produced by the primary homogeneous cause; but it will serve our present purpose to point to the fact that from the mutual attraction of the particles of an irregular nebulous mass there result condensation, rotation, heat, and light.

      It follows as a corollary from the Nebular Hypothesis, that the Earth must once have been incandescent; and whether the Nebular Hypothesis be true or not, this original incandescence of the Earth is now inductively established – or, if not established, at least rendered so highly probable that it is an accepted geological doctrine. Let us look first at the astronomical attributes of this once molten globe. From its rotation there result the oblateness of its form, the alternations of day and night, and (under the influence of the moon and in a smaller degree the sun) the tides, aqueous and atmospheric. From the inclination of its axis, there result the many differences of the seasons, both simultaneous and successive, that pervade its surface, and from the same cause joined with the action of the moon on the equatorial protuberance there results the precession of the equinoxes. Thus the multiplication of effects is obvious. Several of the differentiations due to the gradual cooling of the Earth have been already noticed – as the formation of a crust, the solidification of sublimed elements, the precipitation of water, &c., – and we here again refer to them merely to point out that they are simultaneous effects of the one cause, diminishing heat. Let us now, however, observe the multiplied changes afterwards arising from the continuance of this one cause. The cooling of the Earth involves its contraction. Hence the solid crust first formed is presently too large for the shrinking nucleus; and as it cannot support itself, inevitably follows the nucleus. But a spheroidal envelope cannot sink down into contact with a smaller internal spheroid, without disruption: it must run into wrinkles as the rind of an apple does when the bulk of its interior decreases from evaporation. As the cooling progresses and the envelope thickens, the ridges consequent on these contractions will become greater, rising ultimately into hills and mountains; and the later systems of mountains thus produced will not only be higher, as we find them to be, but will be longer, as we also find them to be. Thus, leaving out of view other modifying forces, we see what immense heterogeneity of surface has arisen from the one cause, loss of heat – a heterogeneity which the telescope shows us to be paralleled on the face of Mars, and which in the moon too, where aqueous and atmospheric agencies have been absent, it reveals under a somewhat different form. But we have yet to notice another kind of heterogeneity of surface similarly and simultaneously caused. While the Earth's crust was still thin, the ridges produced by its contraction must not only have been small, but the spaces between these ridges must have rested with great evenness upon the subjacent liquid spheroid; and the water in those arctic and antarctic regions in which it first condensed, must have been evenly distributed. But as fast as the crust thickened and gained corresponding strength, the lines of fracture from time to time caused in it, must have occurred at greater distances apart; the intermediate surfaces must have followed the contracting nucleus with less uniformity; and there must have resulted larger areas of land and water. If any one, after wrapping up an orange in tissue paper, and observing not only how small are the wrinkles, but how evenly the intervening spaces lie upon the surface of the orange, will then wrap it up in thick cartridge-paper, and note both the greater height of the ridges and the larger spaces throughout which the paper does not touch the orange, he will realize the fact that, as the Earth's solid envelope grew thicker, the areas of elevation and depression increased. In place of islands homogeneously dispersed amid an all-embracing sea, there must have gradually arisen heterogeneous arrangements of continent and ocean. Once more, this double change in the extent and in the elevation of the lands, involved yet another species of heterogeneity – that of coast-line. A tolerably even surface raised out of the ocean must have a simple, regular sea-margin; but a surface varied by table-lands and intersected by mountain-chains must, when raised out of the ocean, have an outline extremely irregular both in its leading features and in its details. Thus, multitudinous geological and geographical results are slowly brought about by this one cause – the contraction of the Earth.

      When we pass from the agency termed igneous, to aqueous and atmospheric agencies, we see the like ever-growing complications of effects. The denuding actions of air and water, joined with those of changing temperature, have, from the beginning, been modifying every exposed surface. Oxidation, heat, wind, frost, rain, glaciers, rivers, tides, waves, have been unceasingly producing disintegration; varying in kind and amount according to local circumstances. Acting upon a tract of granite, they here work scarcely an appreciable effect; there cause exfoliations of the surface, and a resulting heap of débris and boulders; and elsewhere, after decomposing the feldspar into a white clay, carry away this and the accompanying quartz and mica, and deposit them in separate beds, fluviatile and marine. When the exposed land consists of several unlike kinds of sedimentary strata, or igneous rocks, or both, denudation produces changes proportionably more heterogeneous. The formations being disintegrable in different degrees, there follows an increased irregularity of surface. The areas drained by different rivers being differently constituted, these rivers carry down to the sea different combinations of ingredients; and so sundry new strata of unlike compositions are formed. And here we may see very simply illustrated, the truth, which we shall presently have to trace out in more involved cases, that in proportion to the heterogeneity of the object or objects on which any force expends itself, is the heterogeneity of the effects. A continent of complex structure, exposing many strata irregularly distributed, raised to various levels, tilted up at all angles, will, under the same denuding agencies, give origin to innumerable and involved results: each district must be differently modified; each river must carry down a different kind of detritus; each deposit must be differently distributed by the entangled currents, tidal and other, which wash the contorted shores; and this multiplication of results must manifestly be greatest where the complexity of surface is greatest.

      Here we might show how the general truth, that every active force produces more than one change, is again exemplified in the highly-involved flow of the tides, in the ocean currents, in the winds, in the distribution of rain, in the distribution of heat, and so forth. But not to dwell upon these, let us, for the fuller elucidation of this truth