The experiments of Galvani and others, have however proved beyond all doubt, that this fluid, when applied to the nerves and muscles, is capable of exciting various sensations and motions. To produce this fluid by the application of two metals, it is necessary that one of them should be in such a situation, as to be easily oxidable, while the other is prevented from oxidation. If a piece of zinc be put into water, no change will take place; but if a piece of silver be put along with it, the zinc will immediately oxidate, by decomposing the water, and a current of electricity will pass through the silver. If the upper and under surfaces of the tongue be coated with two different metals, one of which is easily oxidable, and these be brought into contact, a sensation is produced resembling taste, which takes place suddenly, like a slight electrical shock. This taste may likewise be produced by applying one part of the metals to the tongue and the other to any part of the body deprived of the cuticle, and bringing them in contact.
The sensation of light may be produced in various ways; such as by applying one metal between the gum and the upper lip, and the other under the tongue; or by putting a silver probe up one of the nostrils, and a piece of zinc upon the tongue; a sensation resembling a very strong flash of light is perceived in the corresponding eye, at the instant of contact.
But the experiments which tend most strongly to prove what I have hinted, are made in the following manner. Lay bare a portion of a great nerve leading to any muscle or limb of an animal, for instance, the leg of a frog separated from the body. Touch the bared nerve with a piece of zinc, and the muscle with a piece of silver, and strong contractions take place the instant these metals are brought into contact. The same effect may be produced by placing a piece of silver on a larger piece of zinc, and putting a worm or a leech on the silver; in moving about, the instant it touches the zinc it is thrown into strong convulsions.
These phenomena have been clearly proved to be electrical; for by a number of pieces of these metals, properly disposed, strong shocks can be given, the electrometer can be affected, a Leyden vial charged, the electric spark seen, and combustible bodies inflamed.
Some animals likewise possess the power of accumulating this influence in a great degree; for instanc the torpedo, and electrical eel, which will both give strong shocks; and if the circuit have a small interruption a spark may be seen, as was shown by Mr. Walsh. On dissecting these fish, Mr. Hunter found an organ very similar to the pile of Volta; it consists of numerous membranaceous columns, filled with plates or pellicles, in the form of thin disks, separated from each other by small intervals, which intervals contain a fluid substance; this organ, like the pile of Volta, is capable of giving repeated shocks, even when surrounded by water.
It is not absolutely necessary to use two metals to produce the galvanic phenomena; for if one side of a metal be made to oxidate, while the other is prevented from oxidation, these appearances will still be produced. It is not indeed necessary to use any metal; for a piece of charcoal, oxidated in the same way, produces galvanism; so does fresh muscular fibre, and perhaps any substance capable of oxidation. The most striking circumstance in galvanism, is, that it accompanies oxidation, and is perhaps never produced without it. But oxidation is always going on in the body by means of respiration and the circulation of the blood. We shall afterwards find reason to believe, that the oxygen, received from the atmosphere by the lungs, is the cause of animal heat, and probably of animal irritability; and it is perhaps not unreasonable to suppose, that the nervous influence or electricity may be separated by the brain, and sent along the nerves, which seem the most powerful conductors of it, to stimulate the muscles to action.
What the nature of the electric fluid is, we are ignorant; some galvanic experiments have led me to suppose that it may be hydrogen, which when combined with caloric appears in the form of gas, but when pure, or perhaps in a different state, may be capable of passing through solid bodies in the form of electricity.
Having given this short view of the human body, considered as a machine composed of bones, muscles, and nerves, I shall proceed to state the different subjects which I shall consider in this course. It is extremely difficult to begin a course like this; for we must either enter abruptly into the middle, or the outset must be in some measure tedious and dry. I have chosen however rather to hazard the latter appellation, with respect to this lecture, than to enter more abruptly into the subject, in order to make it more entertaining. As we proceed, I trust you will feel an increasing interest in the subject; and, I think I may venture to promise, that this will be found the least entertaining lecture in the course. The subjects will be illustrated by experiments, in order to render the deductions more striking.
I shall next proceed to consider the phenomena of respiration, and animal heat; after which I shall explain the circulation of the blood; and the phenomena of digestion and nutrition. I shall then examine, more minutely than has been done in this lecture, the connexion of man with the external world, which will lead to a discussion of the different senses; vision, hearing, smelling, tasting, and feeling.
When these subjects have been discussed as fully as our time will allow, I shall examine, at considerable length, the manner in which the powers that support life, which have been improperly called by physiologists, the nonnaturals, act upon the body. This will naturally lead to a fuller explanation of the system which I have attempted to defend, in my lecture on health. And, after I have fully explained the laws by which the irritable principle is regulated, I shall proceed to show, how those variations from the healthy state, called diseases, are produced; I shall point out the difference that exists between the debility which is brought on by the diminished action of the powers which support life, and that which results from their too powerful action; I shall then inquire into the nature of diseases of increased excitement; and after having shown how the undue action of the powers which support life, operates in producing disease, I shall endeavour to lay down such rules for the preservation of health, as are the result of reasoning on these subjects, and are also confirmed by experience.
LECTURE II. RESPIRATION
In the last lecture I took a short view of the human body, as a moving machine, regulated by the will. We shall now proceed to examine some of its functions more particularly.
I need not tell any of my audience, how necessary air is to the living body; for every person knows that we cannot live when excluded from this fluid; but, before we can understand the manner in which it acts on the body, we must become acquainted with some of its properties.
That the air is a fluid, consisting of such particles as have little or no cohesion, and which slide easily among each other, and yield to the slightest force, is evident from the ease with which animals breathe it, and move through it. Indeed from its being transparent, and therefore invisible, as well as from its extreme tenuity, and the ease with which bodies move through it, people will scarcely believe that they are living at the bottom of an aerial ocean, like fishes at the bottom of the sea. We become, however, very sensible of it, when it flows rapidly in streams or currents, so as to form what is called a wind, which will sometimes act so violently as to tear up the strongest trees by the roots, and blow down to the ground the best and firmest buildings.
Some may still be inclined to ask, what is this air in which we are said to live? We see nothing; we feel nothing; we find ourselves at liberty to move about in any direction, without any hindrance. Whence then comes the assertion, that we are surrounded by a fluid, called air? When we pour water out of a vessel, it appears to be empty; for our senses do not inform us that any thing occupies the place of the water, for instance, when we pour water out of a vial. But this operation is exactly similar to pouring out mercury from a vial in a jar of water, the water gets in and supplies the place of the mercury; so does the air which supplies the place of the water; and this air will prevent water from rising, or filling a vessel which contains it.
Hence we see that air possesses similar appearances of impenetrability with other matter: for it excludes bodies from the space which itself occupies.
Air being therefore material must have weight; and we shall accordingly find, that a quart of it weighs about fifteen grains. But a quart of water weighs about two pounds; this fluid therefore is