Allowing, then, that the chief work of the insect is the removal of surplus organic matter, we can see that a large share of its life should be spent in the larval or grub stage, and that the perfect state need not occupy any more time than is necessary for the fertilisation of the eggs that almost completely fill the body of the female at the time of her emergence from the chrysalis shell.
Many insects undergo their metamorphoses by slow degrees, but the Lepidoptera, after existing for some considerable period without any important visible change in structure, pass by a rapid transition into the next state. Thus, a caterpillar, that has not altered in general form for several weeks, changes into a chrysalis within the course of a few days; and again, after a period of quiescence that may extend throughout the whole of the colder months, becomes a perfect butterfly or moth within twenty minutes of the moment of its emergence.
But this suddenness is more apparent than real, as may easily be proved by internal examinations of the insect at various stages of growth; showing that we are led astray by the rapidity of external changes – the mere moultings or castings of the skin – while the gradual transformations proceeding within are not so readily observed.
We have already said that the life of the perfect butterfly or moth is short. A few days after emergence from the chrysalis case, the female deposits her eggs on the leaves or stems of the plant that is to sustain the larvæ. Her work is now accomplished, and the few days more allowed her are spent in frolicking among the flowers, and sucking the sweet juices they provide. But males and females alike – bedecked with the most gorgeous colours and overflowing with sportive mirth when first they take to the wing – soon show the symptoms of a fast approaching end. Their colours begin to fade, and the beauty-making scales of the wings gradually disappear through friction against the petals of hundreds of flowers visited and the merry dances with scores and scores of playful companions. At last, one bright afternoon, while the sun is still high in the heavens, a butterfly, more weary than usual, with heavy and laborious flight, seeks a place of rest for the approaching night. Here, on a waving stalk, it is soon lulled to sleep by a gentle breeze.
Next morning, a few hours before noon, the blazing sun calls it out for its usual frolics. But its body now seems too heavy to be supported by the feeble and ragged wings, and, after one or two weak attempts at play, incited by the approach of a younger and merrier companion, it settles down in its final resting place. On the following morning a dead butterfly is seen, still clinging by its claws to a swinging stem, from which it is eventually thrown during a storm.
The tale of the perfect moth is very similar to the above, except that it is generally summoned to activity by the approach of darkness.
We see, then, that butterflies and moths exhibit none of that quality which we term parental affection. Their duty ends with the deposition of the eggs, and the parents are dead before the young larvæ have penetrated the shell that surrounds them.
Yet it is wonderful to see how unmistakably the females generally lay their eggs on the very plants that provide the necessary food for their progeny, as if they were not only conscious of and careful concerning the exact requirements of their offspring, but also possessed such a knowledge of botanical science as enabled them to discriminate between the plant required and all others.
Has the perfect insect any selfish motive in this apparently careful selection of a plant on which to lay its eggs? Does the female herself derive any benefit from the particular plant chosen for this purpose? In most cases, certainly not. For it often happens that the blossom of this plant is not by any means one of those that supply the sweets which insects love, and still more frequently does it occur that the eggs are deposited either before the flowers have appeared or after they have faded.
Fig. 10. – The Four Stages of the Large White Butterfly (Pieris Brassicæ).
a, larva; b, pupa; c, imago; d, egg.
Neither can we easily impute to the insect an acquired knowledge of the nature and wants of her offspring, or an acquaintance with botany sufficient to enable her to distinguish plant forms. Our only solution of the problem (which is really no solution at all) is to attribute the whole thing to that inexplicable quality which we are pleased to term natural instinct. It is to be observed, however, that it is not all butterflies and moths that display this unerring power. Some few seem to deposit their eggs indiscriminately on all kinds of herbage. But, I believe, the larvæ of these species are generally grass feeders, and would seldom have to travel far from any spot without meeting with an acceptable morsel.
But we must now pass on to a brief consideration of the other stages of the insect's existence. After a time, varying from a few days to several months, the young caterpillars or larvæ make their appearance. They soon commence feeding in right earnest. Their period of existence in this state varies from a few weeks to several months, and even, in some cases, to years. During this time their growth is generally very rapid, and they undergo a series of moults or changes of skin, of which we shall have more to say in a future chapter. Then, when fully grown, they prepare for an apparently quiescent form, which we speak of as the pupa or chrysalis, and in which they again spend a very variable period, extending over a few days, weeks, or months. Now, inclosed in a protective case, each pupa is undergoing a remarkable change. Some of its old organs are disappearing, and others are developing; and, after all the parts of the future insect have been developed as far as its narrow shell will permit, it bursts forth into the world as a perfect insect or imago.
Its wings at first are small, shapeless, and crumpled in a most unsightly fashion; but it is not long before they assume their full size, beautiful form, and gorgeous colouring. Then, in about another hour or two, the wings, at first soft and flaccid, have become sufficiently dry and stiff to bear their owner rapidly through the air.
We have thus observed some of the more striking features in the structure of the butterfly and moth in its most perfect state; and alluded in a very brief manner to the various stages through which these creatures must necessarily pass before finally reaching this stage. But now we must study these earlier stages more closely, and watch the insects during the marvellous transitions they are destined to undergo. This we shall do in the following chapters.
CHAPTER II
THE EGG
I suppose you are all acquainted with the general structure of the hen's egg, having dissected several, in your own way, many a time.
Its outer covering, which you speak of as the 'shell,' you have observed is hard and brittle. It is composed of a calcareous or limy substance, known chemically as carbonate of lime. If you put some pieces of it into an egg cup, and throw over them a little vinegar or any other liquid acid, you will see them gradually dissolve away, and small bubbles of carbonic acid gas will rise into the air. Then again, if you take a long and narrow strip of the shell, and hold one end of it in a gas or lamp flame, after a short time that end will become softer, and will glow brightly in the flame, for it is converted into lime – the same substance that is used by the builders for making their mortar – and the bright glow is really a miniature lime light, such as is always produced when a piece of lime is made intensely hot.
Just inside this shell you have seen a thin membrane or skin that is easily peeled off the substance of the egg itself. Next to this comes the 'white' of the egg, which is really colourless while liquid, but turns white and more or less solid in the cooking. Last of all, in the centre of this, you have noticed the oval yellow mass that is termed the 'yoke' or 'yolk,' and which contains the embryo of the future chick.
Now if you imagine this egg to be reduced in size till two or three dozen of them would be required to form a single line about one inch long, the outer