It is not necessary, in teaching children the technical language of any art or science, that we should pursue the same order that is requisite in teaching the science itself. Order is required in reasoning, because all reasoning is employed in deducing propositions from one another in a regular series; but where terms are employed merely as names, this order may be dispensed with. It is, however, of great consequence to seize the proper time for introducing a new term; a moment when attention is awake, and when accident has produced some particular interest in the object. In every family, opportunities of this sort occur without any preparation, and such opportunities are far preferable to a formal lecture and a splendid apparatus for the first lessons in natural philosophy and chemistry. If the pump belonging to the house is out of order, and the pump-maker is set to work, an excellent opportunity presents itself for variety of instruction. The centre pin of the handle is taken out, and a long rod is drawn up by degrees, at the end of which a round piece of wood is seen partly covered with leather. Your pupil immediately asks the name of it, and the pump-maker prevents your answer, by informing little master that it is called a sucker. You show it to the child, he handles it, feels whether the leather is hard or soft, and at length discovers that there is a hole through it which is covered with a little flap or door. This, he learns from the workmen, is called a clack. The child should now be permitted to plunge the piston (by which name it should now be called) into a tub of water; in drawing it backwards and forwards, he will perceive that the clack, which should now be called the valve, opens and shuts as the piston is drawn backwards and forwards. It will be better not to inform the child how this mechanism is employed in the pump. If the names sucker and piston, clack and valve, are fixed in his memory, it will be sufficient for his first lesson. At another opportunity, he should be present when the fixed or lower valve of the pump is drawn up; he will examine it, and find that it is similar to the valve of the piston; if he sees it put down into the pump, and sees the piston put into its place, and set to work, the names that he has learned will be fixed more deeply in his mind, and he will have some general notion of the whole apparatus. From time to time these names should be recalled to his memory on suitable occasions, but he should not be asked to repeat them by rote. What has been said, is not intended as a lesson for a child in mechanics, but as a sketch of a method of teaching which has been employed with success.
Whatever repairs are carried on in a house, children should be permitted to see: whilst every body about them seems interested, they become attentive from sympathy; and whenever action accompanies instruction, it is sure to make an impression. If a lock is out of order, when it is taken off, show it to your pupil; point out some of its principal parts, and name them; then put it into the hands of a child, and let him manage it as he pleases. Locks are full of oil, and black with dust and iron; but if children have been taught habits of neatness, they may be clock-makers and white-smiths, without spoiling their clothes, or the furniture of a house. Upon every occasion of this sort, technical terms should be made familiar; they are of great use in the every-day business of life, and are peculiarly serviceable in giving orders to workmen, who, when they are spoken to in a language that they are used to, comprehend what is said to them, and work with alacrity.
An early use of a rule and pencil, and easy access to prints of machines, of architecture, and of the implements of trades, are of obvious use in this part of education. The machines published by the Society of Arts in London; the prints in Desaguliers, Emerson, le Spectacle de la Nature, Machines approuvées par l'Académie, Chambers's Dictionary, Berthoud sur l'Horlogerie, Dictionaire des Arts et des Métiers, may, in succession, be put into the hands of children. The most simple should be first selected, and the pupils should be accustomed to attend minutely to one print before another is given to them. A proper person should carefully point out and explain to them the first prints that they examine; they may afterwards be left to themselves.
To understand prints of machines, a previous knowledge of what is meant by an elevation, a profile, a section, a perspective view, and a (vue d'oiseau) bird's eye view, is necessary. To obtain distinct ideas of sections, a few models of common furniture, as chests of drawers, bellows, grates, &c. may be provided, and may be cut asunder in different directions. Children easily comprehend this part of drawing, and its uses, which may be pointed out in books of architecture; its application to the common business of life, is so various and immediate, as to fix it for ever in the memory; besides, the habit of abstraction, which is acquired by drawing the sections of complicated architecture or machinery, is highly advantageous to the mind.