Рис. 1. Евклидова прямая, отображенная на окружность
Другая схема, более строгая математически, заимствует термины из топологии. Это способ «компактификации» бесконечных пространств, частный случай отображения (нечто вроде картографирования). Так, мы можем установить взаимно-однозначное соответствие между бесконечной евклидовой прямой и окружностью, бесконечной евклидовой плоскостью и сферой. (Здесь читатель должен будет проявить терпение, следуя за несколькими математическими построениями, хотя надеюсь, что прилагаемые иллюстрации наглядно передают их суть. А потом мы вернемся к поэтическим образам, в которых и воплощаются эти идеи.) В первом случае представим себе окружность с радиусом r и центром в точке пересечения координатных осей x и z на евклидовой плоскости. Ниже оси х на расстоянии r проведем параллельную ей прямую. Отобразим теперь эту прямую на окружность следующим образом: точку P
Рис. 2. Евклидова плоскость, отображенная на сферу
Вот еще один способ выразить это, из проективной геометрии: если прямую линию, уходящую в обе стороны в бесконечность, дополнить с каждой стороны «точкой, находящейся в бесконечности» и посредством этого отождествить бесконечность с самой собой, то эту прямую линию можно считать окружностью. Поскольку стандартным способом представления времени является направленная линия – обычно линия, чье направление задается надписанными цифрами, а иногда и просто стрелкой на конце, то это еще один способ одновременно и утверждать, и отрицать движение времени в направлении прошлого или будущего, еще одна конфигурация равновесного покоя, стазиса.
Во втором случае схожим образом можно произвести отображение