Помимо этого в числе 360 и градусах нет ничего особенного. Можно использовать любую систему для измерения углов, и это не изменит их свойств. Например, мера под названием град (или гон) похожа на градус, только в окружности таких 400, а не 360. Поэтому град где-то на 11% у́же градуса, и это значит, что гораздо меньше углов будут иметь величину, выраженную круглым числом: например, 120-градусные углы шелдоновских восьмиугольников равны 1331/3 града. Грады используются в основном военными и в геодезических измерениях, и несложно понять почему. Мы, люди, очень падки на прямые углы и красивые круглые цифры вроде 100. И представьте себе – прямой угол равен точно 100 градам. Это было придумано специально теми же умниками, которые составили метрическую систему (см. главу 2).
Третий способ измерения углов – радианная мера. Радиан – это довольно большой угол (почти 60 градусов), и их всего шесть с четвертью во всей окружности. И какая от этого польза?
Представьте вращающееся колесо. Каждый раз, когда оно поворачивается на угол, равный одному радиану, оно продвигается вперед на расстояние, равное собственному радиусу (отсюда и название). Радианы – это способ деления окружности, используя одну из ее частей, а не выбирая искусственное условное число, как мы делали с градусами (360) и градами (400). Это то, что делает эту меру любимицей ученых, математиков и этих помешанных на геометрии крутильщиков колес, которых так любит высмеивать Шелдон: инженеров. Правда, это он делает, только когда сам не съезжает с катушек на почве геометрии.
эврика! @ caltech.edu
Форма всегда следует за функциональностью
Когда вы имеете дело с большими и сложными молекулами вроде белка, здесь все будет упираться в углы. Белки – это строительные кирпичи клетки: они дают ей структуру, заставляют молекулы взаимодействовать, растягивая их в линию, и передают сигналы. Они состоят из аминокислотных цепей, которые отказываются лежать спокойно, а складываются, выворачиваются и сворачиваются в причудливые формы, наподобие тех кривобоких скрученных гадов, созданных воображением детсадовца из разноцветной проволоки. И это плюс, потому что именно физическая структура каждого белка и дает ему его способности.
В последние годы ученые модифицировали существующие аминокислоты и создали невиданные до этого протеины для выполнения особых задач. Азурит, совершенно новый долгоживущий ярко-синий флуоресцентный белок, был создан путем небольшого изменения некоторых