аЦС = ω * Vа + ωотн. * Vа
Вынесем за скобки абсолютную скорость:
аЦС = Vа * (ω + ωотн.)
Но выражение в скобках представляет собой абсолютную угловую скорость (ωа). Тогда окончательно получим:
аЦС = Vа * ωа
или
ω * V + ωотн. * Vотн. + (ω * Vотн. + ωотн. * V) = Vа * ωа = аЦС
Что и требовалось показать.
Как отмечалось выше разложение центростремительного ускорения равномерного вращательного движения по формуле квадрата суммы двух чисел это ещё не абсурд, а всего лишь математическая абстракция. Физический смысл такой абстракции состоит в том, что она отражает общую энергетику суммарного (пятого) вращательного движения, складывающегося из четырёх абстрактных вращений его исходных компонентов в виде раздельного вращения четырёх отдельных колец. Однако для кинематики и динамики физического вращения единого тела (итогового пятого кольца) это полный абсурд:
Во-первых, масса этих колец в пять раз больше массы единого физического тела, вращающегося с суммарными параметрами линейной и угловой скорости. Естественно, что одно тело невозможно разделить на пять равных ему по массе частей.
Во-вторых, равномерное вращательное движение абсолютно, поэтому все пять колец будут вращаться автономно независимо друг от друга, т.е. между ними не может быть никакой общей физической связи, которая могла бы привести к возникновению какого-либо общего ускорения, в том числе и в виде ускорения Кориолиса.
Ну и, в-третьих, как мы уже отмечали выше, единое физическое тело не может одновременно вращаться в одной и той же плоскости и на одном и том же радиусе с разными угловыми и линейными скоростями.
В классической физике вы никогда и нигде не встретите выражение для центростремительного ускорения равномерного вращательного движения в виде теоремы Кориолиса, т.е. в виде (аЦС = ае + аr + акор), т.к. для равномерного вращательного движения это абсурд. Следовательно, выдавать математический формализм разложения реального равномерного вращательного движения, который не имеет прямой физической аналогии, за аналогию реально представленного в классической физике явления Кориолиса при радиальном относительном движении это не что иное, как абсурд. Следовательно, никакого второго варианта явления Кориолиса при перпендикулярном радиусу относительном движении в классической физике ни теоретически, ни фактически реально не существует.
В динамике поворотного движения и равномерного вращательного движения нет, и не может быть никакой аналогии. Если поворотное движение по первому варианту осуществляется только при наличии внешней активной силы, как радиальной, так и тангенциальной (см. главу 3.5, первый вариант), то в равномерном вращательном движении активного действия нет вообще. Можно по-разному относиться к причислению равномерного вращательного движения к движению по инерции (первый закон Ньютона),