Точное происхождение термина «большие данные» неизвестно. Многие считают, что впервые его употребил еще в 1990-х годах Джон Мэши, главный научный сотрудник компании Silicon Graphics[20]. Но какова бы ни была этимология этого термина, большие данные приобретают все большую важность и для государственного, и для частного сектора.
Большие данные – серия подходов, инструментов и методов обработки огромных объемов структурированных и неструктурированных данных, с которыми не могут эффективно справляться стандартные инструменты. Одним из способов описания больших данных является модель 3V, разработанная фирмой Gartner, ведущей исследования в области информационных технологий. Эти три V–Volume (объем), Velocity (скорость), Variety (многообразие), то есть физический объем, скорость прироста и обработки, а также диапазон типов и источников данных. В большие данные входят и те данные, которые хранятся в памяти, и те, которые создаются с использованием других данных.
Большие данные не только порождают проблемы, но и создают беспрецедентные возможности и для государственного, и для частного сектора. Наряду с новейшими, передовыми инструментами управления базами данных и методами прогнозного анализа, большие данные открывают доступ к ценной информации о множественных взаимосвязях, закономерностях и воздействиях.
Преобразования в действии: здоровье нации
Феномен больших данных – революционный фактор как для сферы государственного управления, так и для многих отраслей экономики. Организации государственного сектора аккумулируют огромные массивы информации. В Великобритании, например, Национальная служба здравоохранения (NHS), одна из самых больших в мире финансируемых государством систем здравоохранения и крупнейший работодатель, хранит гигантский объем клинической информации и данных о пациентах. Помимо прочего, NHS публикует данные по каждому медицинскому назначению, сделанному каждым врачом по месяцам, что в итоге составляет 400 миллионов точек данных[21]. Сегодня большие данные NHS используются государственными службами для анализа работы этой службы и поиска путей ее усовершенствования.
Например, компания Mastodon C, специализирующаяся на больших данных, проводит оценку работы NHS через разнообразный анализ клинических данных[22].