Как не ошибаться. Сила математического мышления. Джордан Элленберг. Читать онлайн. Newlib. NEWLIB.NET

Автор: Джордан Элленберг
Издательство: Манн, Иванов и Фербер
Серия:
Жанр произведения: Математика
Год издания: 2014
isbn: 978-5-00100-466-0
Скачать книгу
Харди. Она более терпима: существуют расходящиеся ряды, которым мы должны приписать какое-то значение, а также ряды, в случае которых нам не следует этого делать, – все зависит от контекста, в котором возникает тот или иной ряд. Современные математики сказали бы, что если нам необходимо присвоить какое-то значение ряду Гранди, то это должно быть 1/2, поскольку, как оказалось, все интересные теории, описывающие бесконечные суммы, либо присваивают этому ряду значение 1/2, либо (подобно теории Коши) вообще отказываются приписывать какое бы то ни было значение сумме этого ряда[50].

      Чтобы записать точные определения Коши, потребуется приложить немного больше усилий. В частности, это касалось и самого Коши, который не составил достаточно четкого описания своих идей в том виде, в котором они известны в настоящее время[51]. (В математике редко бывает так, что автор идеи дает самое четкое ее описание.)[52] Коши был убежденным консерватором и монархистом, но в области математики он оказался знающим себе цену мятежником и настоящим бедствием для академических властей. Как только Коши понял, как можно обойтись без опасных бесконечно малых величин, он по собственной инициативе переписал свой учебный план в Политехнической школе (École Polytechnique) таким образом, чтобы тот отображал его новые идеи. Все окружение Коши пришло от этого в ярость: обманутые студенты, записавшиеся на курс изучения основ математического анализа, а не на семинар по новейшим достижениям в области чистой математики; коллеги, считавшие, что студентам, изучающим в Политехнической школе инженерное дело, не нужен предложенный Коши уровень математической строгости; администраторы, распоряжения которых по поводу необходимости придерживаться официальной программы курса обучения Коши полностью игнорировал. Администрация Политехнической школы ввела новый учебный план по математическому анализу и посадила на занятиях Коши стенографистов, чтобы удостовериться, что он будет придерживаться этого плана. Но Коши не стал этого делать. Его мало волновали потребности инженеров. Его интересовала истина{26}.

      С педагогической точки зрения, трудно защищать поведение Коши. Тем не менее я с пониманием отношусь к его позиции. Одна из величайших радостей математики – неоспоримое ощущение, что ты поймал правильную мысль и докопался до самого ее основания. Такого чувства я не испытывал ни на одном другом уровне своей психической деятельности. А когда вы знаете, как делать что-то правильно, трудно (а для некоторых упрямцев просто невозможно) заставить себя объяснить это неверным способом.

      Глава третья

      Поголовное ожирение

      Комический актер Евгений Мирман часто рассказывает историю, имеющую прямое отношение к статистике. По его словам, он любит повторять на своих выступлениях одну фразу: «Я читал, что сто процентов американцев – азиаты». Какой-нибудь


<p>50</p>

Здесь уместно вспомнить известную фразу Кейди, героини Линдси Лохан: «Предела не существует!» [из фильма Mean Girls, 2004 («Дрянные девчонки»). Прим. М. Г.].

<p>51</p>

Если вы когда-либо изучали математический курс, в котором используются такие символы, как эпсилон и дельта, значит, вы знакомы с преемниками формальных определений Коши.

<p>52</p>

См. у Литтлвуда: «(А. С. Безикович) Репутация математика основывается на числе плохих доказательств, которые он придумал». И далее следует пояснение автора: «Работы первооткрывателей неуклюжи» (Дж. Литлвуд. Математическая смесь. М.: Наука, 1990. С. 42). Прим. М. Г.

<p>26</p>

История о занятиях по исчислению, которые вел Коши, взята из книги: Amir Alexander. Duel at Dawn: Heroes, Martyrs, and the Rise of Modern Mathematics. Harvard University Press, 2010. Амир Александер проводит чрезвычайно интересное историческое исследование взаимодействия между математикой и культурой в начале XIX века. Несколько иная точка зрения на современность подхода Коши представлена в другой публикации: Michael J. Barany. Stuck in the Middle: Cauchy’s Intermediate Value Theorem and the History of Analytic Rigor // Notices of the American Mathematical Society, 2013, Nov., 60, no. 10, p. 1334–1338.