Магия математики: Как найти x и зачем это нужно. Артур Бенджамин. Читать онлайн. Newlib. NEWLIB.NET

Автор: Артур Бенджамин
Издательство: Альпина Диджитал
Серия:
Жанр произведения: Математика
Год издания: 2015
isbn: 978-5-9614-4466-7
Скачать книгу
именно тот результат, который обещан нам знаком равенства. Следуя той же логике и призвав на помощь алгебру, мы докажем, что этот ряд можно продолжать бесконечно.

Отступление

      А теперь – специально для тех, кто хотел немного алгебры. Ряду n предшествует количество чисел, равное 3 + 5 + 7 +… + (2n – 1) = n² – 1, поэтому левая сторона нашего уравнения должна начинаться с числа n², за которым следует n последовательных чисел, от n² + 1 до n² + n. Справа – n последовательных чисел, начиная с n² + n + 1, заканчивая n² + 2n. Если мы временно «забудем» про число n² слева, то увидим, что каждое из n чисел справа на n больше, чем соответствующее ему последовательное число слева. Разница при этом составляет n × n, то есть n². Закономерность эта компенсируется начальным n² слева, поэтому-то левая и правая части и равны.

      Перейдем к другой закономерности. Как мы уже видели, из нечетных чисел можно составлять квадраты. А теперь посмотрим, что произойдет, если собрать их в один большой треугольник – вроде того, что изображен чуть ниже.

      Так отлично видно, что 3 + 5 = 8, а 7 + 9 + 11 = 27, а 13 + 15 + 17 + 19 = 64. Что общего у 1, 8, 27 и 64? Да это же полные кубы чисел! Например, если сложить между собой пять чисел пятого ряда, мы получим:

21 + 23 + 25 + 27 + 29 = 125 = 5 × 5 × 5 = 5³

      Логика вроде бы подсказывает, что сумма чисел в ряду n будет равна n³. Но насколько верным будет этот вывод? Не простое ли это совпадение? Чтобы лучше понять эту закономерность, посмотрим на числа в середине 1, 3 и 5 рядов. Что мы видим? 1, 9 и 25. То есть квадраты. В середине 2 и 4 рядов чисел нет, но по сторонам центра 2 ряда видим числа 3 и 5, среднее арифметическое которых – 4, а по сторонам центра 4 ряда – 15 и 17 со средним арифметическим 16. Давайте подумаем, как эту закономерность можно использовать.

      Снова возьмем 4 ряд. Что мы тут видим? А видим мы, что сумма всех чисел в нем есть 5³ – и не нужно к ним ничего добавлять, чтобы заметить: все они симметрично расположены вокруг 25. Так как среднее арифметическое этих чисел – 5², уравнение преобразуется в 5² + 5² + 5² + 5² + 5² = 5 × 5², то есть 5³. То же справедливо и в отношении 4 ряда: среднее арифметическое всех чисел в нем – 4², их сумма – 4³. Чуть-чуть алгебры (к которой мы здесь не прибегаем), и вы легко сделаете вывод, что среднее арифметическое n чисел ряда n равно n², а их сумма равна n³, что и требовалось доказать.

      Кстати, если уж мы взялись оперировать квадратами и кубами, не могу удержаться, чтобы не указать вам на еще одну закономерность. Что получится, если сложить кубы чисел, начиная с 1³?

      Подсчитывая сумму кубов, мы получаем 1, 9, 36, 100, 225 и т. д. – числа, которые являются полными квадратами. Но это не любые квадраты, а квадраты 1, 3, 6, 10, 15 и т. д. – треугольных чисел! Мы уже знаем, что они по своей сути являются суммами простых чисел, а значит,

1³ + 2³ + 3³ + 4³ + 5³ = 225 = 15² = (1 + 2 + 3 + 4 + 5)²

      Другими словами, сумма кубов первых n чисел есть квадрат суммы этих самых первых n чисел. Подтвердить это мы пока не можем, но в главе 6 пару доказательств увидим.

      Как быстро считать в уме

      Среди читателей наверняка найдутся те, кто,