Во взаимоотношениях физики и математики имеется еще одна интересная черта: математика позволяет доказать, что в физике исходя из разных точек зрения можно прийти к одним и тем же выводам. Это и понятно: если у вас есть аксиомы, то вместо них вы можете воспользоваться некоторыми теоремами; физические же законы построены так деликатно, что их различные, хотя и эквивалентные формулировки качественно отличаются. Этим они и любопытны. Для примера я сформулирую закон тяготения тремя разными способами. Все они совершенно эквивалентны, но звучат очень несхоже.
Первая формулировка – это когда силы между телами описываются уравнением, которое я приводил выше:
Каждое тело, «узнав», что на него действует сила, ускоряется, т. е. изменяет свое движение на определенную величину за секунду. Это обычная формулировка закона, я назову ее ньютоновой. Эта формулировка говорит, что сила зависит от чего-то находящегося на конечном расстоянии. Она обладает так называемым свойством нелокальности. Сила, действующая на предмет, зависит от того, насколько удален от него другой предмет.
Вам, возможно, не понравится мысль о действии на расстоянии. Откуда может узнать предмет, что происходит вдалеке? Ну что ж, имеется другой способ сформулировать закон – очень странный. Он основан на понятии поля. Объяснить его трудно, но я попытаюсь дать вам хотя бы приблизительное представление. Звучит он совсем по-другому. В каждой точке пространства имеется число (именно число, а не механизм: в том-то и вся беда с физикой, что она должна быть математической), и, когда вы переходите с места на место, это число меняется. Если в какой-то точке пространства поместить предмет, то на него будет действовать сила в том направлении, в котором быстрее всего изменяется это число (я дам ему обычное название – потенциал; сила действует в направлении быстрейшего изменения потенциала). Далее, сила пропорциональна тому, насколько быстро изменяется потенциал при перемещении из одной точки в другую. Это только одна часть формулировки, и ее недостаточно, потому что я еще не сказал вам, как именно изменяется потенциал. Я мог бы сказать, что потенциал изменяется обратно пропорционально расстоянию от каждого тела, но тогда мы снова вернулись бы к понятию о действии на расстоянии. Можно сформулировать закон по-другому, сказав: нам не надо знать, что происходит за пределами маленького шарика. Если вы хотите знать, чему равен потенциал в центре, скажите мне просто, каков он на поверхности сколь угодно малого шарика. Вам не надо смотреть вокруг шарика, скажите лишь, каков потенциал по соседству с интересующей вас точкой и какова масса шарика. Правило таково. Потенциал в центре равен среднему потенциалу на поверхности шарика минус постоянная G, которая была в предыдущем уравнении, поделенная на удвоенный радиус шарика (обозначим его через а) и умноженная на массу шарика, если шарик достаточно мал:
Как видите, этот