Рекомбинации, осуществляемые транспонируемыми элементами, тоже являются сайт-специфическими, но специфичность этих сайтов связана с особыми нуклеотидными последовательностями, и эта форма рекомбинации не зависит от recA-гена.
Главным генетическим детерминантом всех путей рекомбинации является ген recA. Его повреждение полностью исключает возможность образования рекомбинантов. Основной способ recA-рекомбинации осуществляется с участием продуктов генов recB и recC (они кодируют синтез эндонуклеазы V). В случае мутации по recB и recC выход рекомбинантов составляет около 20 % от rec+. Однако эти мутации могут быть исправлены путем супрессии в двух генах: sbcA- и sbcB-. Супрессии sbcA– открывают дополнительный путь рекомбинации через ген recE (его продукт – экзонуклеаза VIII). Супрессии sbcB- реализуют рекомбинации через ген recF (структурный ген экзонуклеазы I). Таким образом, генетический контроль рекомбинаций носит сложный характер.
Изучение его механизма – одна из центральных задач молекулярной генетики. Особый интерес представляет изучение механизма гомологической рекомбинации. Это определяется перспективами развития молекулярной медицины. Одной из важнейших стратегических задач, поставленных перед программой «Геном человека», является обнаружение изменений первичной структуры ДНК, которые приводят к нарушению функции генов и, как следствие этого, к развитию наследственных заболеваний человека. Идеальным методом лечения их является генотерапия, основанная на замене поврежденного («больного») гена здоровым. Такая замена может быть осуществлена только с помощью гомологической рекомбинации, механизмы которой у бактерий и эукариот, очевидно, во многом сходны. У бактерий выявлены два способа такой рекомбинации, осуществляемых двумя типами рекомбиназ: АТФ-зависимым белком RecA и АТФ-независимой ренатуразой. Соответственно, и у эукариот обнаружены АТФ-зависимые и АТФ-независимые ДНК-трансферазы, среди которых найдены белки, функционально сходные с RecA-белком бактерий.
Решающая роль в гомологической рекомбинации у бактерии, как указано выше, принадлежит гену recA. Его продукт – белок RecA c м. м. 38 кД – выполняет ряд уникальных функций: 1) прочно связывается с одиночными нитями ДНК; 2) способствует высвобождению разорванной нити из двойной спирали ДНК; 3) одновременно может присоединяться и к двойной спирали ДНК, и к одиночной нити и удерживать их вместе; 4) обладает свойством ДНК-зависимой АТФазы. Благодаря этому свойству обеспечивается серия конформационных изменений, которые обусловливают превращение трехнитевого комплекса с неспаренными основаниями в трехнитевый комплекс со спаренными основаниями. С помощью этой реакции происходит прямое комплементарное взаимодействие между одиночной нитью ДНК и двойной спиралью