Симметричное просветление
Для человека, изучавшего математику симметрии, такая шестиугольная система клеток со сдвоенной точкой в центре выглядит очень знакомо. Она является визитной карточкой вполне конкретного симметричного объекта, называемого группой SU(3).
На мой взгляд, это великолепно. Про симметрию я знаю. У меня появляется шанс понять, что происходит в глубинах моей игральной кости. Собственно говоря, моя кость – это идеальное средство объяснения идей, которые лежат в основе математики симметрии. Преобразованиями симметрии такого кубика (если пренебречь очками на его гранях) называются все способы взять кубик, повернуть его и положить обратно так, чтобы он выглядел точно таким же образом, как раньше. Всего таких движений существует 24. Например, кубик можно просто повернуть на четверть оборота вокруг одной из граней или повернуть его на треть оборота вокруг одной из осей, проходящих через противоположные углы кубика.
Всего разных вариантов действий существует 24 (включая тот странный вариант, в котором кубик вообще можно оставить в покое и ничего с ним не делать). Этот набор симметричных движений называют S 4 или группой симметрии четвертого порядка. С учетом зеркальной симметрии, то есть того обстоятельства, что кость также можно увидеть в зеркальном отражении, у такого кубика имеется 48 разных симметрий.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.