Обычно частотный подход связывают с учением о вероятностях, представленным в работах немецкого математика Р. фон Мизеса. Его концепция была систематизирована и уточнена затем Г. Рейхенбахом. Позиция Мизеса оказалась весьма противоречивой, что уже не раз отмечалось в литературе.[10] Свидетельство тому – истолкование им теории вероятностей в качестве отрасли математического естествознания, и в то же время он предпринимает попытки сформулировать ее как строгую математическую дисциплину, что обнаруживается, скажем, в соотнесенности базисного понятия данной концепции – коллектива – с традиционным математическим понятием – предел. В то же время Мизес неоднократно подчеркивает, что идеальный и абстрактный объект – коллектив – не является математическим объектом.[11] По существу же в данном пункте Мизес сталкивает стремление к математической корректности в определении понятия коллектива с основным требованием радикального эмпиризма – идеализация должна быть непосредственно связанной с наглядно наблюдаемым.
В концепции, развиваемой Мизесом, имеет место также переплетение собственно конструктивных и философских задач, вследствие чего надо различать его теорию частоты и философско-методологическую интерпретацию данной теории. В философском плане эта концепция вписывается в рамки редукционистской программы. Суть последней, как известно, составляют два следующих момента:
1) указание так называемого базисного языка как фрагмента естественного языка;
2) утверждение о том, что познавательная ценность терминов теории определяется их отношением к базисному языку.
Выбор базисного языка дает ряд форм редукционизма, например, феноменализм и физикализм.
Мизесовский подход избирает в качестве базисного языка язык относительных частот. В то же время высказывается убеждение, что возможен перевод в термины относительных частот большинства вероятностных высказываний, используемых в науке.
Исходным пунктом этого подхода является утверждение о тождественности вероятности с эмпирически наблюдаемыми частотами. Поскольку же вероятность выступает как объект математики, требуются средства для перехода от вероятности к эмпирическому материалу. Мизес усматривает это средство в понятии коллектива.
Одно из центральных положений частотной теории звучит: О вероятности можно говорить только в случае, если налицо имеется твердо определенный и отграниченный коллектив.[12] Коллектив, по Мизесу, есть некоторая безграничная последовательность экспериментов, в которой каждый ее элемент (эксперимент) либо