Наша математическая вселенная. В поисках фундаментальной природы реальности. Макс Тегмарк. Читать онлайн. Newlib. NEWLIB.NET

Автор: Макс Тегмарк
Издательство: Corpus (АСТ)
Серия: Элементы
Жанр произведения: Математика
Год издания: 2014
isbn: 978-5-17-085475-2
Скачать книгу
неустойчивость. Средняя кривая соответствует плоской Вселенной, которая остается идеально плоской и расширяется вечно. Две другие кривые начинаются почти так же, с практически неискривленного пространства через миллиардную долю секунды, и спустя миллиардную долю секунды их плотности различаются лишь в 24-й значащей цифре[17]. Но гравитация усиливает эти ничтожные различия, и в следующие 500 млн лет это заставляет Вселенную, описываемую нижней кривой, прекратить расширение и коллапсировать в Большом хлопке – Большом взрыве наоборот. В этой коллапсирующей в итоге Вселенной пространство приобретает такое искривление, что сумма углов треугольника оказывается гораздо больше 180°. Верхняя кривая, напротив, описывает Вселенную, искривленную таким образом, что углы в сумме дают меньше 180°. Она расширяется гораздо быстрее пограничной плоской Вселенной, и к настоящему времени ее газ должен был стать слишком разреженным, чтобы образовывать галактики, а соответствующий сценарий можно назвать «Большим замерзанием».

      Рис. 5.3. Еще одна необъясненная загадка фридмановской модели Большого взрыва состоит в том, что Вселенная так долго существует без заметного искривления пространства, ведущего к Большому хлопку или Большому замерзанию. Эти кривые соответствуют незначительно различающимся значениям плотности в момент, когда возраст Вселенной составлял одну миллиардную секунды: изменение последней из 24 цифр приводит к переходу в режим Большого хлопка или Большого замерзания прежде, чем Вселенная достигнет 4 % своего нынешнего возраста. (Благодарю Неда Райта за идею рисунка.)

      Так почему наша Вселенная плоская? Если заменить 24 цифры на рис. 5.3 случайными значениями и решить уравнение Фридмана, то вероятность получить Вселенную, которая останется плоской спустя 14 млрд лет, будет меньше, чем для дротика, брошенного с Марса, попасть точно в центр мишени на Земле. Тем не менее фридмановская модель Большого взрыва не предполагает никакого объяснения этому совпадению.

      Конечно, рассудил Алан Гут, должен существовать некий механизм, который вынуждает Вселенную иметь точно такую плотность, какая требуется, чтобы обеспечить исключительно плоскую геометрию в самом начале ее истории.

      Как действует инфляция

      Сила удвоения

      Алан догадался, что с помощью одной странно звучащей посылки можно разом решить и проблему горизонта, и проблему плоской геометрии, и объяснить многое другое. Посылка такова: в некоторый момент существовала однородная капля некоей плотной субстанции, которую было очень трудно рассеять. Это значит, что если бы 1 г такой субстанции вдвое увеличился в объеме, то его плотность (отношение массы к объему) осталась бы почти такой же, и получилось бы уже 2 г материи. Сравним это с обычным веществом, таким как воздух: если он расширяется, занимая больший объем (как при выпускании сжатого воздуха из шины), общее число молекул газа, а значит, и


<p>17</p>

Мы даже не измерили силу гравитации с точностью больше 4 знаков после запятой, так что последние 20 цифр я привожу лишь для наглядности.