Компьютерная информация под защитой. Правовое и криминалистическое обеспечение безопасности компьютерной информации. Монография. Александр Сотов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Александр Сотов
Издательство: КноРус медиа
Серия:
Жанр произведения: Компьютеры: прочее
Год издания: 2015
isbn: 978-5-4365-0316-5
Скачать книгу
получил наименование «гарвардской архитектуры».

      Напротив, группа ученых Принстонского университета, членом которой являлся известный американский математик венгерского происхождения Джон (Янош) фон Нейман[5], полагала, что «память» и «программы» должны находиться в одном аппаратном устройстве. То есть, команды и числа, которые с помощью этих команд обрабатываются, находятся в одинаковых ячейках, которые последовательно обрабатываются. Это, в свою очередь, требовало, чтобы как данные, так и команды по их обработке, писались на одном и том же языке, причем и над программами, и над данными можно было выполнять одни и те же операции. Данный принцип, именуемый «принципом единства памяти», стал отличительным признаком «архитектуры фон Неймана».

      Уязвимым местом неймановской архитектуры являлось введение данных. Устройство Эйкена могло принимать данные в привычной для человека десятичной форме исчисления. При такой форме все числа описываются с помощью десяти различных знаков – от 0 до 9.

      Архитектура Неймана этого не позволяла. Но для решения проблемы группой Неймана был найден оригинальный путь, который, в конечном счете, и предопределил почти повсеместную победу «неймановской архитектуры», а также привел к появлению компьютера в традиционном понимании.

      Этот путь заключался в использовании двоичного кода. При двоичном коде все числа записываются с помощью двух знаков – 0 и 1. В двоичном коде нулю соответствует 0, единице – 1, а вот число «2» в двоичном коде пишется как «10». «3» выражается «11», «4» – это 100 и т. д.

      Существенным достоинством двоичного кодирования является то, что оно позволило «материализовать» информацию, перевести ее из области абстрактного сигнала в область «материала», который может быть подвергнут обработке с помощью технических средств. Сигнал либо есть (1), либо его нет (0). «Память» компьютера состоит из огромного количества элементарных электромагнитных устройств, которые либо испускают электрические импульсы (что для устройства обработки является 1), либо не испускают (это дает 0). Если сигнал меняется с 1 на 0, это означает уменьшение числа, то есть вычитание, а если с 0 на 1 – это сложение. Конечно, запись даже небольшого числа вроде 32 и арифметических операций с ним в двоичном коде выглядит очень громоздко, но скорость считывания сигналов уравновешивала все недостатки.

      Первоначально элементарные устройства были заметных размеров, и считывание сигналов с них было относительно долгим. Но широкое внедрение полупроводников, микросхем и пр. позволили кардинально уменьшить размеры вычислительных устройств и одновременно повысить их быстродействие.

      Тем не менее, вплоть до настоящего момента все компьютеры, как и их далекие предшественники, могут только складывать и вычитать числа, записанные в двоичном коде, но делают это гораздо быстрее.

      Следует отметить, что использование двоичного кода далеко не сразу было признано единственно верным решением. Как уже говорилось, имелись варианты систем,


<p>5</p>

Burks A. W., Goldstine H. H., Neumann J. «Preliminary Discussion of the Logical Design of an Electronic Computing Instrument». Princeton, N. J., July 1946. О содержании статьи на русском языке см. Смирнов А. Д. «Архитектура вычислительных систем: Учебное пособие для вузов» – М.: Наука, 1990