запутанности, находилось на совершенно ином уровне по сравнению с утверждением о том, что запутанность каким-то образом связана с некой замысловатой химической реакцией, в которой участвует только пара частиц. Но и это утверждение было встречено немалым скептицизмом. Считалось, что живые клетки состоят в основном из воды и биомолекул, которые находятся в состоянии возбуждения, что приводит к постоянному измерению их состояния и утрате странных квантовых свойств. Под словом «измерение» мы, разумеется, не подразумеваем того, что молекулы воды или биомолекулы выполняют измерения подобно тому, как мы измеряем вес или температуру объекта, а затем записываем эти показатели на бумагу или на жесткий диск компьютера либо просто запоминаем их. Мы говорим о том, что происходит, когда молекула воды сталкивается с одной из запутанных частиц: ее последующее движение будет зависеть от состояния этой частицы. Если бы вы исследовали движение молекулы воды после столкновения с частицей, вы бы смогли сделать вывод о некоторых свойствах этой частицы. Поэтому в каком-то смысле молекула воды выполнила экспериментальное «измерение», поскольку ее движение фиксирует состояние запутанной пары частиц независимо от того, существует ли наблюдатель их столкновения. Даже подобное
случайное измерение обычно приводит к нарушению состояния запутанности. Вот почему утверждение о том, что частицы способны сохранять настолько тонко организованные квантовые состояния запутанности в теплом пространстве сложно устроенных живых клеток, принималось многими за нелепую идею, граничащую с безумием.
Тем не менее в последние годы наши познания в этой области значительно расширились, и не только в связи с изучением птиц. Было обнаружено, что такие квантовые явления, как суперпозиция и туннельный эффект, являются частью многих биологических процессов – от поглощения солнечного света растениями до синтеза биомолекул во всех клетках нашего организма. Даже чувство обоняния или набор генов, который мы наследуем от родителей, могут зависеть от таинственного квантового мира. Статьи с результатами исследований в области квантовой биологии регулярно появляются на страницах самых престижных научных журналов мира. Более того, уже существует небольшая (но постоянно растущая) группа ученых, уверенных в значительной, даже решающей роли законов квантовой механики в самом явлении жизни, а также в том, что жизнь и есть то самое состояние, которому таинственные квантовые свойства присущи на границе микро- и макромиров.
Нам стало ясно, что таких ученых пока очень мало, когда мы решили провести международный симпозиум по квантовой биологии в Университете Суррея в сентябре 2012 года: на симпозиум приехали почти все специалисты в этой области, и все они разместились в небольшом лекционном зале. Однако в сферу квантовой биологии приходит все больше ученых, вдохновленных открытиями, которые подтверждают значительную роль квантовой механики в биологических