Это заставило нас предположить, что, изучив через цифровую линзу книги проекта Google, мы сможем создать новый «скоп» для изучения человеческой истории. И мы знали – сколько бы времени ни потребовалось, мы сможем изучить эти данные.
Больше данных – больше проблем
С большими данными появляются не только новые возможности для понимания окружающего мира, но и новые научные проблемы[29].
Первая серьезная проблема заключается в том, что большие данные и данные, которыми оперируют ученые, структурированы совершенно по-разному. Ученые предпочитают отвечать на тщательно сформулированные вопросы с помощью элегантных экспериментов, дающих воспроизводимые и точные результаты. Однако большие данные часто сопровождаются неразберихой. Типичный массив больших данных представляет собой смесь фактов и измерений, сделанных без какой-либо научной цели и с использованием далеко не универсальных процедур. Он изобилует ошибками и огромным количеством пугающих пробелов – например, недостающими элементами информации, важными для любого разумного ученого. Такие ошибки и упущения часто непоследовательны, даже в рамках единого массива данных. Это связано с тем, что большие массивы данных часто создаются путем объединения большого количества более мелких массивов данных. Очевидно, что некоторые из компонентов массивов данных более надежны, чем другие, и у каждого из них есть свои особенности. Хорошим примером может служить социальная сеть Facebook. Добавление людей «в друзья» может означать совершенно разное для разных людей. Кто-то делает это довольно свободно. Кто-то более осторожен. Некоторые добавляют в друзья коллег, другие этого не делают. Отчасти работа с большими данными как раз и требует, чтобы их хорошо понимали и учитывали все подобные особенности. Но настолько хорошо можно быть знакомым с петабайтом данных?
Вторая серьезная сложность заключается в том, что большие данные не всегда вписываются в концепцию того, что мы привыкли понимать под научным методом. Ученые любят подтверждать конкретные гипотезы и постепенно собирать свои выводы сначала в связные, а затем и математически верные теории. Стоит покопаться в любом достаточно интересном большом наборе данных, и вы неминуемо сделаете открытие – к примеру, найдете корреляцию между активизацией морского пиратства и изменением температуры в атмосфере. Такой вид исследований иногда называется «исследованием без гипотез», поскольку вы никогда не знаете в начале работы, что найдете в процессе. Тем не менее большие данные вам помогут куда меньше, если нужно объяснить такую корреляцию с точки зрения причинно-следственной связи. Вызывают ли действия пиратов глобальное потепление? Заставляет ли повышение температуры на улице заниматься пиратством? А если эти два показателя не связаны между собой,